Title: | Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives (English) |
Author: | Tvrdá, Katarína |
Author: | Novotný, Peter |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 4 |
Year: | 2023 |
Pages: | 1175-1188 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations. (English) |
Keyword: | repeated integral |
Keyword: | Cauchy formula for repeated integration |
Keyword: | quadrature |
Keyword: | cubature |
Keyword: | numerical differentiation |
MSC: | 65D32 |
DOI: | 10.21136/CMJ.2023.0437-22 |
. | |
Date available: | 2023-11-23T12:24:58Z |
Last updated: | 2023-11-27 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151953 |
. | |
Reference: | [1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables.U.S. Department of Commerce, Washington (1964). Zbl 0171.38503, MR 0167642 |
Reference: | [2] Bauchau, O. A., Craig, J. I.: Euler-Bernoulli beam theory.Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. 10.1007/978-90-481-2516-6_5 |
Reference: | [3] Burden, R. L., Faires, J. D.: Numerical Analysis.PWS Publishing Company, Boston (1993). Zbl 0788.65001 |
Reference: | [4] Folland, G. B.: Advanced Calculus.Prentice Hall, Hoboken (2001). |
Reference: | [5] Holoborodko, P.: Stable Newton-Cotes Formulas.Available at \brokenlink{http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/{stable-newton-cotes-formulas/}}. |
Reference: | [6] Janečka, A., Průša, V., Rajagopal, K. R.: Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range.Arch. Mech. 68 (2016), 3-25. Zbl 1338.74073, MR 3497874 |
Reference: | [7] Selvam, V. K. M., Bindhu, K. R.: Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note.J. Struct. Eng. 41 (2014), 420-431. |
Reference: | [8] Tvrdá, K.: Solution of a high bridge pillar under wind effects taking into account the real properties of reinforced concrete.MATEC Web Conf. 313 (2020), 6 pages. 10.1051/matecconf/202031300008 |
Reference: | [9] Tvrdá, K., Minárová, M.: Computation of definite integral over repeated integral.Tatra Mt. Math. Publ. 72 (2018), 141-154. Zbl 07031665, MR 3939444, 10.2478/tmmp-2018-0026 |
. |
Fulltext not available (moving wall 24 months)