[1] Antczak, T.: 
A new approach to multiobjective programming with a modified objective function. J. Global Optim. 27 (2003), 485-495. 
DOI  | 
MR 2012818 
[2] Antczak, T.: 
An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions. Numer. Funct. Anal. Optim, 25 (2004), 423-438. 
DOI  | 
MR 2106268 
[3] Antczak, T.: 
A new method of solving nonlinear mathematical programming problems involving $r$-invex functions. Journal of Mathematical Analysis and Applications 311 (2005), 313-323. 
DOI  | 
MR 2165479 
[4] Antczak, T.: 
Saddle point criteria in an $\eta$-approximation method for nonlinear mathematical programming problems involving invex functions. J. Optim. Theory Appl, 132 (2007), 71-87. 
DOI  | 
MR 2303801 
[5] Antczak, T.: 
On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. J. Global Optim. 59 (2014), 757-785. 
DOI  | 
MR 3226830 
[6] Antczak, T., Michalak, A.: 
$\eta$-Approximation method for non-convex multiobjective variational problems. Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. 
DOI  | 
MR 3673740 
[7] Bector, C. R., Husain, I.: 
Duality for multiobjective variational problems. J. Math. Anal. Appl. 166 (1992), 214-229. 
DOI  | 
MR 1159648 
[8] Chandra, S., Craven, B. D., Husain, I.: 
Continuous programming containing arbitrary norms. J. Austral. Math. Soc. 39 (1985), 28-38. 
DOI  | 
MR 0786973 
[9] Dorn, W. S.: 
A symmetric dual theorem for quadratic programs. J. Oper. Res. Soc. Japan 2 (1960), 93-97. 
MR 0120038 
[10] Ghosh, M. K., Shaiju, A. J.: 
Existence of value and saddle point in infinite-dimensional differential games. J. Optim. Theory Appl. 121 (2004), 301-325. 
DOI  | 
MR 2085280 | 
Zbl 1099.91023 
[12] Husain, I., Ahmed, A.: 
Mixed type duality for a variational problem with strong pseudoinvex constraints. Soochow J. Math. 32 (2006), 589-603. 
MR 2265973 
[13] Jayswal, A., Antczak, T., Jha, S.: 
On equivalence between a variational problem and its modified variational problem with the $\eta$-objective function under invexity. Int. Trans. Oper. Res. 26 (2019), 2053-2070. 
DOI  | 
MR 3939131 
[14] Jha, S., Das, P., Antczak, T.: 
Exponential type duality for $\eta$-approximated variational problems. Yugoslav J. Oper. Res. 30 (2019), 19-43. 
DOI  | 
MR 4063168 
[15] Khazafi, K., Rueda, N., Enflo, P.: 
Sufficiency and duality for multiobjective control problems under generalized (B, $\rho$)-type I functions. J. Global Optim. 46 (2010), 111-132. 
DOI  | 
MR 2566139 
[16] Li, T., Wang, Y., Liang, Z., Pardalos, P. M.: 
Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Global Optim. 38 (2007), 405-419. 
DOI  | 
MR 2328021 | 
Zbl 1175.90317 
[17] Mond, B., Chandra, S., Husain, I.: 
Duality for variational problems with invexity. J. Math. Anal. Appl. 134 (1988), 322-328. 
DOI  | 
MR 0961341 
[18] Mond, B., Hanson, M. A.: 
Duality for variational problems. J. Math. Anal. Appl. 18 (1967), 355-364. 
DOI  | 
MR 0209943 
[19] Mond, B., Weir, T.: 
Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. 
MR 0652702 
[20] Mond, B., Husain, I.: 
Sufficient optimality criteria and duality for variational problems with generalized invexity. J. Austral. Math. Soc. 31 (1989), 108-121. 
DOI  | 
MR 1002095 
[21] Nahak, C., Nanda, S.: 
Duality for multiobjective variational problems with invexity. Optimization 36 (1996), 235-248. 
DOI  | 
MR 1419265 
[22] Nahak, C., Behera, N.: 
Optimality conditions and duality for multiobjective variational problems with generalized $\rho-(\eta,\theta)$ - B-type-I functions. J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. 
DOI  | 
MR 2795387 
[23] Zalmai, G. J.: 
Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems. Optimization 30 (1994), 15-51. 
DOI  | 
MR 1277803 
[24] Zhian, L., Qingkai, Y.: 
Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256 (2001), 446-461. 
DOI  | 
MR 1821749