Previous |  Up |  Next

Article

Keywords:
duality; variational problem; optimal solution
Summary:
The present article explores the way $\eta$-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta$-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.
References:
[1] Antczak, T.: A new approach to multiobjective programming with a modified objective function. J. Global Optim. 27 (2003), 485-495. DOI  | MR 2012818
[2] Antczak, T.: An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions. Numer. Funct. Anal. Optim, 25 (2004), 423-438. DOI  | MR 2106268
[3] Antczak, T.: A new method of solving nonlinear mathematical programming problems involving $r$-invex functions. Journal of Mathematical Analysis and Applications 311 (2005), 313-323. DOI  | MR 2165479
[4] Antczak, T.: Saddle point criteria in an $\eta$-approximation method for nonlinear mathematical programming problems involving invex functions. J. Optim. Theory Appl, 132 (2007), 71-87. DOI  | MR 2303801
[5] Antczak, T.: On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. J. Global Optim. 59 (2014), 757-785. DOI  | MR 3226830
[6] Antczak, T., Michalak, A.: $\eta$-Approximation method for non-convex multiobjective variational problems. Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. DOI  | MR 3673740
[7] Bector, C. R., Husain, I.: Duality for multiobjective variational problems. J. Math. Anal. Appl. 166 (1992), 214-229. DOI  | MR 1159648
[8] Chandra, S., Craven, B. D., Husain, I.: Continuous programming containing arbitrary norms. J. Austral. Math. Soc. 39 (1985), 28-38. DOI  | MR 0786973
[9] Dorn, W. S.: A symmetric dual theorem for quadratic programs. J. Oper. Res. Soc. Japan 2 (1960), 93-97. MR 0120038
[10] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games. J. Optim. Theory Appl. 121 (2004), 301-325. DOI  | MR 2085280 | Zbl 1099.91023
[11] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. DOI 10.1016/0022-247X(81)90123-2 | MR 0614849
[12] Husain, I., Ahmed, A.: Mixed type duality for a variational problem with strong pseudoinvex constraints. Soochow J. Math. 32 (2006), 589-603. MR 2265973
[13] Jayswal, A., Antczak, T., Jha, S.: On equivalence between a variational problem and its modified variational problem with the $\eta$-objective function under invexity. Int. Trans. Oper. Res. 26 (2019), 2053-2070. DOI  | MR 3939131
[14] Jha, S., Das, P., Antczak, T.: Exponential type duality for $\eta$-approximated variational problems. Yugoslav J. Oper. Res. 30 (2019), 19-43. DOI  | MR 4063168
[15] Khazafi, K., Rueda, N., Enflo, P.: Sufficiency and duality for multiobjective control problems under generalized (B, $\rho$)-type I functions. J. Global Optim. 46 (2010), 111-132. DOI  | MR 2566139
[16] Li, T., Wang, Y., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Global Optim. 38 (2007), 405-419. DOI  | MR 2328021 | Zbl 1175.90317
[17] Mond, B., Chandra, S., Husain, I.: Duality for variational problems with invexity. J. Math. Anal. Appl. 134 (1988), 322-328. DOI  | MR 0961341
[18] Mond, B., Hanson, M. A.: Duality for variational problems. J. Math. Anal. Appl. 18 (1967), 355-364. DOI  | MR 0209943
[19] Mond, B., Weir, T.: Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. MR 0652702
[20] Mond, B., Husain, I.: Sufficient optimality criteria and duality for variational problems with generalized invexity. J. Austral. Math. Soc. 31 (1989), 108-121. DOI  | MR 1002095
[21] Nahak, C., Nanda, S.: Duality for multiobjective variational problems with invexity. Optimization 36 (1996), 235-248. DOI  | MR 1419265
[22] Nahak, C., Behera, N.: Optimality conditions and duality for multiobjective variational problems with generalized $\rho-(\eta,\theta)$ - B-type-I functions. J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. DOI  | MR 2795387
[23] Zalmai, G. J.: Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems. Optimization 30 (1994), 15-51. DOI  | MR 1277803
[24] Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256 (2001), 446-461. DOI  | MR 1821749
Partner of
EuDML logo