Previous |  Up |  Next

Article

Title: Strong convergence for weighted sums of WOD random variables and its application in the EV regression model (English)
Author: Ding, Liwang
Author: Jiang, Caoqing
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 93-111
Summary lang: English
.
Category: math
.
Summary: The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results. (English)
Keyword: errors-in-variables regression model
Keyword: least squares estimator
Keyword: widely orthant dependent
Keyword: strong consistency
MSC: 60F15
MSC: 62F12
DOI: 10.21136/AM.2023.0004-23
.
Date available: 2024-02-26T10:56:35Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152254
.
Reference: [1] Allen, R. G. D.: The assumptions of linear regression.Economica 6 (1939), 191-201. 10.2307/2548931
Reference: [2] Carroll, R. J., Ruppert, D., Stefanski, L. A.: Measurement Error in Nonlinear Models.Monographs on Statistics and Applied Probability 63. Chapman & Hall, London (1995). Zbl 0853.62048, MR 1630517, 10.1201/9781420010138
Reference: [3] Chen, P., Wen, L., Sung, S. H.: Strong and weak consistency of least squares estimators in simple linear EV regression models.J. Stat. Plann. Inference 205 (2020), 64-73. Zbl 1437.62103, MR 4011623, 10.1016/j.jspi.2019.06.004
Reference: [4] Chen, W., Wang, Y., Cheng, D.: An inequality of widely dependent random variables and its applications.Lith. Math. J. 56 (2016), 16-31. Zbl 1385.60040, MR 3472103, 10.1007/s10986-016-9301-8
Reference: [5] Choi, B. D., Sung, S. H.: Almost sure convergence theorems of weighted sums of random variables.Stochastic Anal. Appl. 5 (1987), 365-377. Zbl 0633.60049, MR 0912863, 10.1080/07362998708809124
Reference: [6] Cui, H.: Asymptotic normality of $M$-estimates in the EV model.Syst. Sci. Math. Sci. 10 (1997), 225-236. Zbl 0905.62072, MR 1469182
Reference: [7] Deaton, A.: Panel data from time series of cross-sections.J. Econom. 30 (1985), 109-126. Zbl 0584.62193, 10.1016/0304-4076(85)90134-4
Reference: [8] Deng, X., Tang, X.-F., Wang, S.-J., Wang, X.-J.: On the strong convergence properties for weighted sums of negatively orthant dependent random variables.Appl. Math., Ser. B (Engl. Ed.) 33 (2018), 35-47. Zbl 1399.60082, MR 3779102, 10.1007/s11766-018-3423-1
Reference: [9] Fazekas, I., Kukush, A. G.: Asymptotic properties of an estimator in nonlinear functional errors-in-variables models with dependent error terms.Comput. Math. Appl. 34 (1997), 23-39. Zbl 0911.62054, MR 1487730, 10.1016/S0898-1221(97)00204-6
Reference: [10] Fuller, W. A.: Measurement Error Models.Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1987). Zbl 0800.62413, MR 0898653, 10.1002/9780470316665
Reference: [11] Hu, T.: Negatively superadditive dependence of random variables with applications.Chin. J. Appl. Probab. Stat. 16 (2000), 133-144. Zbl 1050.60502, MR 1812714
Reference: [12] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications.Ann. Stat. 11 (1983), 286-295. Zbl 0508.62041, MR 0684886, 10.1214/aos/1176346079
Reference: [13] Miao, Y., Yang, G., Shen, L.: The central limit theorem for LS estimator in simple linear EV regression models.Commun. Stat., Theory Methods 36 (2007), 2263-2272. Zbl 1183.62039, MR 2396557, 10.1080/03610920701215266
Reference: [14] Miao, Y., Zhao, F., Wang, K., Chen, Y.: Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors.Stat. Pap. 54 (2013), 193-206. Zbl 1256.62013, MR 3016962, 10.1007/s00362-011-0418-x
Reference: [15] Shen, A.: Bernstein-type inequality for widely dependent sequence and its application to nonparametric regression models.Abstr. Appl. Anal. 2013 (2013), Article ID 862602, 9 pages. Zbl 1470.62056, MR 3081600, 10.1155/2013/862602
Reference: [16] Shen, A., Yao, M., Wang, W., Volodin, A.: Exponential probability inequalities for WNOD random variables and their applications.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110 (2016), 251-268. Zbl 1334.60040, MR 3462086, 10.1007/s13398-015-0233-7
Reference: [17] Sung, S. H.: Almost sure convergence for weighted sums of i.i.d. random variables. II.Bull. Korean Math. Soc. 33 (1996), 419-425. Zbl 0865.60021, MR 1419389
Reference: [18] Teicher, H.: Almost certain convergence in double arrays.Z. Wahrscheinlichkeitstheor. Verw. Geb. 69 (1985), 331-345. Zbl 0548.60028, MR 0787602, 10.1007/BF00532738
Reference: [19] Wang, K., Wang, Y., Gao, Q.: Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate.Methodol. Comput. Appl. Probab. 15 (2013), 109-124. Zbl 1263.91027, MR 3030214, 10.1007/s11009-011-9226-y
Reference: [20] Wang, X., Wu, Y., Hu, S.: Strong and weak consistency of LS estimators in the EV regression model with negatively superadditive-dependent errors.AStA, Adv. Stat. Anal. 102 (2018), 41-65. Zbl 1421.62023, MR 3749656, 10.1007/s10182-016-0286-8
Reference: [21] Wang, X., Xu, C., Hu, T.-C., Volodin, A., Hu, S.: On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models.TEST 23 (2014), 607-629. Zbl 1307.60024, MR 3252097, 10.1007/s11749-014-0365-7
Reference: [22] Wang, Y., Cheng, D.: Basic renewal theorems for random walks with widely dependent increments.J. Math. Anal. Appl. 384 (2011), 597-606. Zbl 1230.60095, MR 2825210, 10.1016/j.jmaa.2011.06.010
Reference: [23] Wang, Y., Cui, Z., Wang, K., Ma, X.: Uniform asymptotics of the finite-time ruin probability for all times.J. Math. Anal. Appl. 390 (2012), 208-223. Zbl 1237.91139, MR 2885767, 10.1016/j.jmaa.2012.01.025
Reference: [24] Wang, Y., Wang, X.: Complete $f$-moment convergence for Sung's type weighted sums and its application to the EV regression models.Stat. Pap. 62 (2021), 769-793. Zbl 1482.60049, MR 4232917, 10.1007/s00362-019-01112-z
Reference: [25] Wu, Q. Y.: Probability Limit Theory for Mixing Sequences.Science Press of China, Beijing (2006).
Reference: [26] Xi, M., Wang, R., Cheng, Z., Wang, X.: Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications.Stat. Pap. 61 (2020), 1663-1684. Zbl 1453.60081, MR 4127491, 10.1007/s00362-018-0996-y
Reference: [27] Xu, S., Miao, Y.: Almost sure convergence of weighted sums for negatively associated random variables.Commun. Stat., Theory Methods 43 (2014), 2581-2594. Zbl 1316.60043, MR 3217835, 10.1080/03610926.2013.841921
Reference: [28] Yi, Y., Chen, P., Sung, S. H.: Strong laws for weighted sums of random variables satisfying generalized Rosenthal type inequalities.J. Inequal. Appl. 2020 (2020), Article ID 43, 8 pages. Zbl 1503.60040, MR 4066646, 10.1186/s13660-020-02311-1
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo