Previous |  Up |  Next

Article

Title: On generalizations of fuzzy metric spaces (English)
Author: Shi, Yi
Author: Yao, Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 6
Year: 2023
Pages: 880-903
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and $\mathcal{M}$-fuzzy metric spaces proposed by Sedghi and Shobe. Since the ordinary tripled norm is the same as the ordinary norm up to the induced topology, we keep our spirit on fuzzy normed structures and introduce a concept of generalized fuzzy 2-normed spaces from the viewpoint of topological generalization. It is proved that generalized fuzzy 2-normed spaces always induces a Hausdorff topology. (English)
Keyword: generalized fuzzy 2-metric space
Keyword: generalized fuzzy $2$-normed space
Keyword: tripled fuzzy metric space
Keyword: Hausdorff topology
MSC: 03B52
MSC: 03G27
MSC: 52A01
idZBL: Zbl 07830569
idMR: MR4712967
DOI: 10.14736/kyb-2023-6-0880
.
Date available: 2024-02-26T11:14:31Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152262
.
Reference: [1] Abrishami-Moghaddam, M., Sistani, T.: Some results on best coapproximation in fuzzy normed spaces..Afr. Mat. 25 (2014), 539-548. MR 3248599,
Reference: [2] Alegre, C., Romaguera, S.: Characterization of metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-)norms..Fuzzy Sets Syst. 161 (2010), 2181-2192. MR 2652719,
Reference: [3] Bag, T., Samanta, S. K.: Finite dimensional fuzzy normed linear spaces..J. Fuzzy Math. 11 (2003), 687-705. MR 2005663
Reference: [4] Chaipunya, P., Kumam, P.: On the distance between three arbitrary points..J. Funct. Spaces 2013 (2013), 194631. MR 3132673,
Reference: [5] Cheng, S. C., Mordeson, J. N.: Fuzzy linear operator and fuzzy normed linear spaces..Bull. Cal. Math. Soc. 86 (1994), 429-436. MR 1351812
Reference: [6] Došenović, T., Rakić, D., Radenović, S., Carić, B.: Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces..AIMS Math.8 (2023), 2154-2167. MR 4501175,
Reference: [7] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets Syst. 64 (1994), 395-399. Zbl 0843.54014, MR 1289545,
Reference: [8] George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces..Fuzzy Sets Syst. 90 (1997), 365-368. Zbl 0917.54010, MR 1477836,
Reference: [9] Goleţ, I.: On fuzzy normed spaces..Southeast Asian Bull. Math. 31 (2007), 1-10. MR 2317398,
Reference: [10] Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A.: On convergence in fuzzy metric spaces..Topology Appl. 156 (2009), 3002-3006. MR 2556057,
Reference: [11] Gregori, V., Miñana, J. J.: On fuzzy $\psi$-contractive sequences and fixed point theorems..Fuzzy Sets Syst. 300 (2016), 245-252. MR 3523453,
Reference: [12] Gregori, V., Miñana, J. J., Morillas, S., Sapena, A.: Characterizing a class of completable fuzzy metric spaces..Topology Appl. 203 (2016), 3-11. MR 3481066,
Reference: [13] Gregori, V., Miñana, J. J., Morillas, S., Miravet, D.: Fuzzy partial metric spaces..Int. J. Gen. Syst. 48 (2019), 260-279. MR 3904572, 10.1080/03081079.2018.1552687
Reference: [14] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications..Fuzzy Sets Syst. 170 (2011), 95-111. Zbl 1210.94016, MR 2775611,
Reference: [15] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces..Fuzzy Sets Syst. 161 (2010), 2193-2205. Zbl 1201.54011, MR 2652720,
Reference: [16] García, J. Gutiérrez, Romaguera, S.: Examples of non-strong fuzzy metrics..Fuzzy Sets Syst. 162 (2011), 91-93. MR 2734890,
Reference: [17] Ha, K. S., Cho, Y. J., White, A.: Strictly convex and strictly $2$-convex $2$-normed spaces..Math. Jpn. 33 (1988), 3, 375-384. MR 0956851,
Reference: [18] Khan, K. A.: Generalized normed spaces and fixed point theorems..J. Math. Comput. Sci. 13 (2014), 157-167. MR 3293890,
Reference: [19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [20] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetica 11 (1975), 326-334. MR 0410633,
Reference: [21] Kundu, A., Bag, T., Nazmul, Sk.: A new generalization of normed linear space..Topol. Appl. 256 (2019), 159-176. MR 3910824,
Reference: [22] Meenakshi, A. R., Cokilavany, R.: On fuzzy $2$-normed linear spaces..J. Fuzzy Math. 9 (2001), 345-351. MR 1839977
Reference: [23] Menger, K.: Statistical metrics..Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. Zbl 0063.03886, MR 0007576,
Reference: [24] Merghadi, F., Aliouche, A.: A related fixed point theorem in $n$ fuzzy metric spaces..Iran. J. Fuzzy Syst. 7 (2010) 73-86. MR 2722021
Reference: [25] Mihet, D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces..Fuzzy Sets Syst. 159 (2008), 739-744. MR 2410532,
Reference: [26] Mohiuddine, S. A.: Some new results on approximation in fuzzy 2-normed spaces..Math. Comput. Modelling 53 (2011), 574-580. MR 2769428,
Reference: [27] Mohiuddine, S. A., Sevli, H., Cancan, M.: Statistical convergence in fuzzy 2-normed space..J. Comput. Anal. Appl. 12 (2010), 787-798. MR 2649299
Reference: [28] Mustafa, Z., Sims, B.: A new approach to generalized metric spaces..J. Nonlinear Convex Anal. 7 (2006), 2, 289-297. MR 2254125
Reference: [29] Patel, U. D., Radenovic, S.: An application to nonlinear fractional differential qquation via $\alpha$-$\Gamma$F fuzzy contractive mappings in a fuzzy metric space..Mathematics 10 (16) (2022), 2831.
Reference: [30] Saadati, R., Vaezpour, S. M.: Some results on fuzzy Banach spaces..J. Appl. Math. Comput. 17 (2005), 475-484. MR 2108820,
Reference: [31] Sapena, A., Morillas, S.: On strong fuzzy metrics..In: Proc. Workshop in Applied Topology WiAT09: Applied Topology: Recent progress for Computer Science, Fuzzy Math. Econom. 2009, pp. 135-141.
Reference: [32] Sedghi, S., Shobe, N.: Fixed point theorem in $\mathcal{M}$-fuzzy metric spaces with property (E)..Adv. Fuzzy Math. 1 (2006), 55-65. MR 2386818
Reference: [33] Sedghi, S., Shobe, N., Aliouche, A.: A generalization of fixed point theorems in $S$-metric spaces..Mat. Vesn. 64 (2012), 258-266. MR 2911870
Reference: [34] Sedghi, S., Shobe, N., Zhou, H.: A common fixed point theorem in $D^*$-metric spaces..Fixed Point Theory Appl. (2007), Article ID 27906, 13 pages. MR 2369244,
Reference: [35] Sharma, A. K.: A note on fixed-points in $2$-metric spaces..Indian J. Pure Appl. Math. 11 (1980),12, 1580-1583. MR 0617834
Reference: [36] Sharma, S., Sharma, S.: Common fixed point theorem in fuzzy $2$-metric space..Acta Cienc. Indica Math. 23 (1997), 1-4. MR 1710865
Reference: [37] Tian, J.-F., Ha, M.-H., Tian, D.-Z.: Tripled fuzzy metric spaces and fixed point theorem..Inform. Sci. 518 (2020), 113-126. MR 4053026,
Reference: [38] Vijayabalaji, S., Thillaigovindan, N.: Fuzzy semi $n$-metric space..Bull. Pure Appl. Sci. Sect. E Math. Stat. 28 (2009), 283-293. MR 2827717
Reference: [39] Xiao, J.-Z, Zhu, X.-H., Zhou, H.: On the topological structure of KM fuzzy metric spaces and normed spaces..IEEE Trans. Fuzzy Syst. 28 (2020), 1575-1584.
Reference: [40] Yan, C. H.: Fuzzifying topology induced by Morsi fuzzy pseudo-norms..Int. J. Gen. Syst. 51 (2022), 648-662. MR 4452968,
.

Files

Files Size Format View
Kybernetika_59-2023-6_5.pdf 457.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo