Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
BiHom-Hopf algebra; BiHom-Yang-Baxter equation; $n$-monoidal category; Drinfeld double
Summary:
The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new $n$-monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
References:
[1] Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. CRM Monograph Series 29. AMS, Providence (2010). DOI 10.1090/crmm/029 | MR 2724388 | Zbl 1209.18002
[2] Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R.: Iterated monoidal categories. Adv. Math. 176 (2003), 277-349. DOI 10.1016/S0001-8708(03)00065-3 | MR 1982884 | Zbl 1030.18006
[3] Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Commun. Algebra 39 (2011), 2216-2240. DOI 10.1080/00927872.2010.490800 | MR 2813174 | Zbl 1255.16032
[4] Caenepeel, S., Wang, D., Yin, Y.: Yetter-Drinfeld modules over weak bialgebras. Ann. Univ. Ferrara, Nuova Ser., Sez. VII 51 (2005), 69-98. DOI 10.1007/BF02824824 | MR 2294760 | Zbl 1132.16031
[5] Chen, Y., Zhang, L.: The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation. J. Math. Phys. 55 (2014), Article ID 031702, 18 pages. DOI 10.1063/1.4868964 | MR 3221244 | Zbl 1292.16022
[6] Fang, X.-L., Liu, W.: Solutions of the BiHom-Yang-Baxter equations. Sb. Math. 209 (2018), 901-918 translation from Mat. Sb. 209 2018 128-145. DOI 10.1070/SM8863 | MR 3807910 | Zbl 1442.16035
[7] Forcey, S., Siehler, J., Sowers, E. S.: Operads in iterated monoidal categories. J. Homotopy Relat. Struct. 2 (2007), 1-43. MR 2326931 | Zbl 1135.18004
[8] Graziani, G., Makhlouf, A., Menini, C., Panaite, F.: BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. SIGMA, Symmetry Integrability Geom. Methods Appl. 11 (2015), Article ID 086, 34 pages. DOI 10.3842/SIGMA.2015.086 | MR 3415909 | Zbl 1358.17006
[9] Guo, S., Zhang, X., Wang, S.: Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras. Colloq. Math. 143 (2016), 79-103. DOI 10.4064/cm6509-12-2015 | MR 3459536 | Zbl 1367.16032
[10] Guo, S., Zhang, X., Wang, S.: The construction and deformation of BiHom-Novikov algebras. J. Geom. Phys. 132 (2018), 460-472. DOI 10.1016/j.geomphys.2018.06.011 | MR 3836793 | Zbl 1442.17023
[11] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. DOI 10.1016/j.jalgebra.2005.07.036 | MR 2194957 | Zbl 1138.17012
[12] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70. MR 1680657 | Zbl 0943.17007
[13] Joyal, A., Street, S.: Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra 71 (1991), 43-51. DOI 10.1016/0022-4049(91)90039-5 | MR 1107651 | Zbl 0726.18004
[14] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[15] Li, J., Chen, L., Sun, B.: Bihom-Nijienhuis operators and T*-extensions of Bihom-Lie superalgebras. Hacet. J. Math. Stat. 48 (2019), 785-799. DOI 10.15672/hjms.2018.549 | MR 3974585 | Zbl 1488.17026
[16] Liu, L., Makhlouf, A., Menini, C., Panaite, F.: $\{\sigma,\tau\}$-Rota-Baxter operators, infinitesimal Hom-bialgebras and the associative (bi)Hom-Yang-Baxter equation. Can. Math. Bull. 62 (2019), 355-372. DOI 10.4153/CMB-2018-028-8 | MR 3952524 | Zbl 1460.17027
[17] Lu, D., Zhang, X.: Hom-L-R-smash biproduct and the category of Hom-Yetter-Drinfel'd- Long bimodules. J. Algebra Appl. 17 (2018), Article ID 1850133, 19 pages. DOI 10.1142/S0219498818501335 | MR 3813706 | Zbl 1430.16030
[18] Majid, S.: Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Mat. Palermo, II. Ser., Suppl. 26 (1991), 197-206. MR 1151906 | Zbl 0762.18005
[19] Majid, S.: Quantum double for quasi-Hopf algebras. Lett. Math. Phys. 45 (1998), 1-9. DOI 10.1023/A:1007450123281 | MR 1631648 | Zbl 0940.16018
[20] Makhlouf, A., Panaite, F.: Yetter-Drinfeld modules for Hom-bialgebras. J. Math. Phys. 55 (2014), Article ID 013501, 17 pages. DOI 10.1063/1.4858875 | MR 3390433 | Zbl 1292.16025
[21] Makhlouf, A., Panaite, F.: Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra. J. Algebra 441 (2015), 314-343. DOI 10.1016/j.jalgebra.2015.05.032 | MR 3391930 | Zbl 1332.16024
[22] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. DOI 10.4303/jglta/S070206 | MR 2399415 | Zbl 1184.17002
[23] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie Theory in Mathematics, Physics and Beyond Springer, Berlin (2009), 189-206. DOI 10.1007/978-3-540-85332-9_17 | MR 2509148 | Zbl 1173.16019
[24] Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 9 (2010), 553-589. DOI 10.1142/S0219498810004117 | MR 2718646 | Zbl 1259.16041
[25] Montgomery, S.: Hopf algebras and their actions on rings. Regional Conference Series in Mathematics 82. AMS, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[26] Nenciu, A.: The center construction for weak Hopf algebras. Tsukaba J. Math. 26 (2002), 189-204. DOI 10.21099/tkbjm/1496164389 | MR 1915985 | Zbl 1029.16023
[27] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. DOI 10.1088/1751-8113/42/16/165202 | MR 2539278 | Zbl 1179.17001
[28] Yau, D.: Hom-quantum groups. I. Quasi-triangular Hom-bialgebras. J. Phys. A, Math. Theor. 45 (2012), Article ID 065203, 23 pages. DOI 10.1088/1751-8113/45/6/065203 | MR 2881054 | Zbl 1241.81110
[29] Zhang, X., Dong, L.: Braided mixed datums and their applications on Hom-quantum groups. Glasg. Math. J. 60 (2018), 231-251. DOI 10.1017/S0017089517000088 | MR 3733844 | Zbl 1443.18010
[30] Zhang, X., Guo, S., Wang, S.: Drinfeld codoubles of Hom-Hopf algebras. Adv. Appl. Clifford Algebr. 29 (2019), Article ID 36, 26 pages. DOI 10.1007/s00006-019-0949-0 | MR 3923497 | Zbl 1454.17010
[31] Zhang, X., Wang, D.: Cotwists of bicomonads and BiHom-bialgebras. Algebr. Represent. Theor. 23 (2020), 1355-1385. DOI 10.1007/s10468-019-09888-2 | MR 4125582 | Zbl 1455.18004
[32] Zhang, X., Wang, W., Zhao, X.: Drinfeld twists for monoidal Hom-bialgebras. Colloq. Math. 156 (2019), 199-228. DOI 10.4064/cm7359-4-2018 | MR 3925088 | Zbl 1446.16039
[33] Zhao, X., Zhang, X.: Lazy 2-cocycles over monoidal Hom-Hopf algebras. Colloq. Math. 142 (2016), 61-81. DOI 10.4064/cm142-1-3 | MR 3417744 | Zbl 1375.16016
[34] Zhu, H., Liu, G., Yang, T.: Characterization of quasi-Yetter-Drinfeld modules. J. Algebra Appl. 19 (2020), Article ID 2050058, 16 pages. DOI 10.1142/S0219498820500589 | MR 4082442 | Zbl 1444.16047
Partner of
EuDML logo