Title: | The generalized Toeplitz operators on the Fock space $F_{\alpha }^{2}$ (English) |
Author: | Xu, Chunxu |
Author: | Yu, Tao |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 1 |
Year: | 2024 |
Pages: | 231-246 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $\mu $ be a positive Borel measure on the complex plane $\mathbb {C}^n$ and let $j=(j_1,\cdots ,j_n)$ with $j_i\in \mathbb {N}$. We study the generalized Toeplitz operators $T_{\mu }^{(j)}$ on the Fock space $F_{\alpha }^{2}$. We prove that $T_{\mu }^{(j)}$ is bounded (or compact) on $F_{\alpha }^{2}$ if and only if $\mu $ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p<\infty $. (English) |
Keyword: | generalized Toeplitz operator |
Keyword: | boundedness |
Keyword: | compactness |
Keyword: | Schatten class |
Keyword: | Fock space |
MSC: | 30H20 |
MSC: | 47B35 |
idZBL: | Zbl 07893376 |
idMR: | MR4717831 |
DOI: | 10.21136/CMJ.2024.0066-23 |
. | |
Date available: | 2024-03-13T10:08:43Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152277 |
. | |
Reference: | [1] Abreu, L. D., Faustino, N.: On Toeplitz operators and localization operators.Proc. Am. Math. Soc. 143 (2015), 4317-4323. Zbl 1321.47055, MR 3373930, 10.1090/proc/12211 |
Reference: | [2] Coburn, L. A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators.Systems, Approximation, Singular Integral Operators, and Related Topics Operator Theory: Advances and Applications 129. Birkhäuser, Basel (2001), 169-178. Zbl 1005.47033, MR 1882695, 10.1007/978-3-0348-8362-7_7 |
Reference: | [3] Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators.J. Funct. Anal. 205 (2003), 107-131. Zbl 1047.47038, MR 2020210, 10.1016/S0022-1236(03)00166-6 |
Reference: | [4] Daubechies, I.: Time-frequency localization operators: A geometric phase space approach.IEEE Trans. Inf. Theory 34 (1988), 605-612. Zbl 0672.42007, MR 0966733, 10.1109/18.9761 |
Reference: | [5] Engliš, M.: Toeplitz operators and group representations.J. Fourier Anal. 13 (2007), 243-265. Zbl 1128.47029, MR 2334609, 10.1007/s00041-006-6009-x |
Reference: | [6] Engliš, M.: Toeplitz operators and localization operators.Trans. Am. Math. Soc. 361 (2009), 1039-1052. Zbl 1165.47019, MR 2452833, 10.1090/S0002-9947-08-04547-9 |
Reference: | [7] Feichtinger, H. G., Nowak, K.: A Szegö-type theorem for Gabor-Toeplitz localization operators.Mich. Math. J. 49 (2001), 13-21. Zbl 1010.47021, MR 1827072, 10.1307/mmj/1008719032 |
Reference: | [8] Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another.Integral Equations Oper. Theory 70 (2011), 541-559. Zbl 1262.47044, MR 2819157, 10.1007/s00020-011-1887-y |
Reference: | [9] Isralowitz, J., Zhu, K.: Toeplitz operators on the Fock space.Integral Equations Oper. Theory 66 (2010), 593-611. Zbl 1218.47046, MR 2609242, 10.1007/s00020-010-1768-9 |
Reference: | [10] Lo, M.-L.: The Bargmann transform and windowed Fourier localization.Integral Equations Oper. Theory 57 (2007), 397-412. Zbl 1141.47025, MR 2307818, 10.1007/s00020-006-1462-0 |
Reference: | [11] Luecking, D. H.: Trace ideal criteria for Toeplitz operators.J. Funct. Anal. 73 (1987), 345-368. Zbl 0618.47018, MR 0899655, 10.1016/0022-1236(87)90072-3 |
Reference: | [12] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815 |
Reference: | [13] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space.Rev. Mat. Iberoam. 20 (2004), 563-610. Zbl 1057.32005, MR 2073132, 10.4171/RMI/401 |
Reference: | [14] Suárez, D.: A generalization of Toeplitz operators on the Bergman space.J. Oper. Theory 73 (2015), 315-332. Zbl 1399.32010, MR 3346124, 10.7900/jot.2013nov28.2023 |
Reference: | [15] Wang, X., Cao, G., Zhu, K.: Boundedness and compactness of operators on the Fock space.Integral Equations Oper. Theory 77 (2013), 355-370. Zbl 1317.47026, MR 3116663, 10.1007/s00020-013-2066-0 |
Reference: | [16] Xu, C., Yu, T.: Schatten class generalized Toeplitz operators on the Bergman space.Czech. Math. J. 71 (2021), 1173-1188. Zbl 07442483, MR 4339120, 10.21136/CMJ.2021.0336-20 |
Reference: | [17] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains.J. Oper. Theory 20 (1988), 329-357. Zbl 0676.47016, MR 1004127 |
Reference: | [18] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. AMS, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138 |
Reference: | [19] Zhu, K.: Analysis on Fock Spaces.Graduate Texts in Mathematics 263. Springer, New York (2012). Zbl 1262.30003, MR 2934601, 10.1007/978-1-4419-8801-0 |
. |
Fulltext not available (moving wall 24 months)