Title:
|
Recurrence and mixing recurrence of multiplication operators (English) |
Author:
|
Amouch, Mohamed |
Author:
|
Lakrimi, Hamza |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
1 |
Year:
|
2024 |
Pages:
|
1-11 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \|{\cdot }\|_{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent. (English) |
Keyword:
|
hypercyclicity |
Keyword:
|
recurrent operator |
Keyword:
|
left multiplication operator |
Keyword:
|
right multiplication operator |
Keyword:
|
tensor product |
Keyword:
|
Banach ideal of operators |
MSC:
|
37B20 |
MSC:
|
47A16 |
MSC:
|
47B47 |
idZBL:
|
Zbl 07830539 |
idMR:
|
MR4715552 |
DOI:
|
10.21136/MB.2023.0047-22 |
. |
Date available:
|
2024-03-13T10:15:25Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152286 |
. |
Reference:
|
[1] Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions.Plenum Press, New York (1997). Zbl 0919.54033, MR 1467479, 10.1007/978-1-4757-2668-8 |
Reference:
|
[2] Amouch, M., Lakrimi, H.: Supercyclicity of multiplication on Banach ideal of operators.Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. MR 4417157, 10.5269/bspm.52067 |
Reference:
|
[3] Bayart, F., Matheron, É.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318, 10.1017/cbo9780511581113 |
Reference:
|
[4] Birkhoff, G. D.: Surface transformations and their dynamical applications.Acta Math. 43 (1922), 1-119 \99999JFM99999 47.0985.03. MR 1555175, 10.1007/BF02401754 |
Reference:
|
[5] Bonet, J., Martínez-Giménez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators.J. Math. Anal. Appl. 297 (2004), 599-611. Zbl 1062.47011, MR 2088683, 10.1016/j.jmaa.2004.03.073 |
Reference:
|
[6] Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A.: Frequently recurrent operators.Available at https://arxiv.org/abs/2006.11428v1 (2020), 31 pages. MR 4489276 |
Reference:
|
[7] Chan, K. C.: Hypercyclicity of the operator algebra for a separable Hilbert space.J. Oper. Theory 42 (1999), 231-244. Zbl 0997.47058, MR 1716973 |
Reference:
|
[8] K. C. Chan, R. D. Taylor, Jr.: Hypercyclic subspaces of a Banach space.Integral Equations Oper. Theory 41 (2001), 381-388. Zbl 0995.46014, MR 1857797, 10.1007/BF01202099 |
Reference:
|
[9] Costakis, G., Manoussos, A., Parissis, I.: Recurrent linear operators.Complex Anal. Oper. Theory 8 (2014), 1601-1643. Zbl 1325.47019, MR 3275437, 10.1007/s11785-013-0348-9 |
Reference:
|
[10] Costakis, G., Parissis, I.: Szemerédi's theorem, frequent hypercyclicity and multiple recurrence.Math. Scand. 110 (2012), 251-272. Zbl 1246.47003, MR 2943720, 10.7146/math.scand.a-15207 |
Reference:
|
[11] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.M. B. Porter Lectures. Princeton University Press, Princeton (1981). Zbl 0459.28023, MR 0603625, 10.1515/9781400855162 |
Reference:
|
[12] Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A.: Product recurrence for weighted backward shifts.Appl. Math. Inf. Sci. 9 (2015), 2361-2365. MR 3358706 |
Reference:
|
[13] Gilmore, C.: Dynamics of generalised derivations and elementary operators.Complex Anal. Oper. Theory 13 (2019), 257-274. Zbl 7032879, MR 3905592, 10.1007/s11785-018-0774-9 |
Reference:
|
[14] Gilmore, C., Saksman, E., Tylli, H.-O.: Hypercyclicity properties of commutator maps.Integral Equations Oper. Theory 87 (2017), 139-155. Zbl 6715520, MR 3609241, 10.1007/s00020-016-2332-z |
Reference:
|
[15] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18. AMS, Providence (1969). Zbl 0181.13504, MR 0246142, 10.1090/mmono/018 |
Reference:
|
[16] Gottschalk, W. H., Hedlund, G. H.: Topological Dynamics.Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). Zbl 0067.15204, MR 0074810, 10.1090/coll/036 |
Reference:
|
[17] Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem.J. Oper. Theory 54 (2005), 147-168. Zbl 1104.47010, MR 2168865 |
Reference:
|
[18] Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators.Bull. Am. Math. Soc. 36 (1999), 345-381. Zbl 0933.47003, MR 1685272, 10.1090/S0273-0979-99-00788-0 |
Reference:
|
[19] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos.Universitext. Springer, Berlin (2011). Zbl 1246.47004, MR 2919812, 10.1007/978-1-4471-2170-1 |
Reference:
|
[20] Gupta, M., Mundayadan, A.: Supercyclicity in spaces of operators.Result. Math. 70 (2016), 95-107. Zbl 1384.47003, MR 3534995, 10.1007/s00025-015-0463-1 |
Reference:
|
[21] Martínez-Giménez, F., Peris, A.: Universality and chaos for tensor products of operators.J. Approximation Theory 124 (2003), 7-24. Zbl 1062.47014, MR 2010778, 10.1016/S0021-9045(03)00118-7 |
Reference:
|
[22] Petersson, H.: Hypercyclic conjugate operators.Integral Equations Oper. Theory 57 (2007), 413-423. Zbl 1141.47005, MR 2307819, 10.1007/s00020-006-1459-8 |
Reference:
|
[23] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique.Acta Math. 13 (1890), 1-270 French \99999JFM99999 22.0907.01. |
Reference:
|
[24] Rolewicz, S.: On orbits of elements.Stud. Math. 32 (1969), 17-22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22 |
Reference:
|
[25] Shapiro, J. H.: Notes on the dynamics of linear operators.Available at \def{ }\brokenlink{https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/{LynDynamics.html}}. |
Reference:
|
[26] Yin, Z., Wei, Y.: Recurrence and topological entropy of translation operators.J. Math. Anal. Appl. 460 (2018), 203-215. Zbl 6824859, MR 3739900, 10.1016/j.jmaa.2017.11.046 |
Reference:
|
[27] Yousefi, B., Rezaei, H.: Hypercyclicity on the algebra of Hilbert-Schmidt operators.Result. Math. 46 (2004), 174-180. Zbl 1080.47013, MR 2093472, 10.1007/BF03322879 |
Reference:
|
[28] Yousefi, B., Rezaei, H.: On the supercyclicity and hypercyclicity of the operator algebra.Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. Zbl 1154.47004, MR 2420891, 10.1007/s10114-007-6601-2 |
. |