Previous |  Up |  Next

Article

Title: On a theorem of McCoy (English)
Author: Sharma, Rajendra Kumar
Author: Singh, Amit B.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 27-38
Summary lang: English
.
Category: math
.
Summary: We study McCoy's theorem to the skew Hurwitz series ring $({\rm HR}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy's theorem of skew Hurwitz series. (English)
Keyword: skew Hurwitz series ring
Keyword: $\omega $-compatible ring
Keyword: skew Hurwitz serieswise
Keyword: quasi-Armendariz rings
Keyword: zip ring
Keyword: APP ring
MSC: 16S10
MSC: 16S85
MSC: 16U80
idZBL: Zbl 07830541
idMR: MR4715554
DOI: 10.21136/MB.2023.0031-22
.
Date available: 2024-03-13T10:16:50Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152290
.
Reference: [1] Ahmadi, M., Moussavi, A., Nourozi, V.: On skew Hurwitz serieswise Armendariz rings.Asian-Eur. J. Math. 7 (2014), Article ID 1450036, 19 pages. Zbl 1308.16033, MR 3257511, 10.1142/S1793557114500363
Reference: [2] Annin, S.: Associated primes over Ore extensions rings.J. Algera Appl. 3 (2004), 193-205. Zbl 1060.16029, MR 2069261, 10.1142/S0219498804000782
Reference: [3] Armendariz, E. P.: A note on extensions of Baer and P.P.-rings.J. Aust. Math. Soc. 18 (1974), 470-473. Zbl 0292.16009, MR 0366979, 10.1017/S1446788700029190
Reference: [4] Beachy, J. A., Blair, W. D.: Rings whose faithful left ideals are cofaithful.Pac. J. Math. 58 (1975), 1-13. Zbl 0309.16004, MR 0393092, 10.2140/pjm.1975.58.1
Reference: [5] Benhissi, A., Koja, F.: Basic properties of Hurwitz series rings.Ric. Mat. 61 (2012), 255-273. Zbl 1318.13034, MR 3000659, 10.1007/s11587-012-0128-2
Reference: [6] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On quasi-Baer rings.Algebra and Its Applications Contemporary Mathematics 259. AMS, Providence (2000), 67-92. Zbl 0974.16006, MR 1778495, 10.1090/conm/259
Reference: [7] Cedó, F.: Zip rings and Mal'cev domains.Commun. Algebra 19 (1991), 1983-1991. Zbl 0733.16007, MR 1121118, 10.1080/00927879108824242
Reference: [8] Cortes, W.: Skew polynomial extensions over zip rings.Int. J. Math. Math. Sci. 2008 (2008), Article ID 496720, 9 pages. Zbl 1159.16021, MR 2393011, 10.1155/2008/496720
Reference: [9] Faith, C.: Rings with zero intersection property on annihilators: Zip rings.Publ. Mat., Barc. 33 (1989), 329-338. Zbl 0702.16015, MR 1030970, 10.5565/PUBLMAT_33289_09
Reference: [10] Faith, C.: Annihilator ideals, associated primes and Kasch-McCoy commutative rings.Commun. Algebra 19 (1991), 1867-1892. Zbl 0729.16015, MR 1121111, 10.1080/00927879108824235
Reference: [11] Fields, D. E.: Zero divisors and nilpotent elements in power series rings.Proc. Am. Math. Soc. 27 (1971), 427-433. Zbl 0219.13023, MR 0271100, 10.1090/S0002-9939-1971-0271100-6
Reference: [12] Fliess, M.: Sur divers produits de séries formelles.Bull. Soc. Math. Fr. 102 (1974), 181-191 French. Zbl 0313.13021, MR 0354647, 10.24033/bsmf.1777
Reference: [13] Gilmer, R., Grams, A., Parker, T.: Zero divisors in power series rings.J. Reine Angew. Math. 278/279 (1975), 145-164. Zbl 0309.13009, MR 0387274, 10.1515/crll.1975.278-279.145
Reference: [14] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings.Acta. Math. Hung. 107 (2005), 207-224. Zbl 1081.16032, MR 2148584, 10.1007/s10474-005-0191-1
Reference: [15] Hassanein, A. M.: Clean rings of skew Hurwitz series.Matematiche 62 (2007), 47-54. Zbl 1150.16029, MR 2389111
Reference: [16] Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring.J. Pure Appl. Algebra 168 (2002), 45-52. Zbl 1007.16020, MR 1879930, 10.1016/S0022-4049(01)00053-6
Reference: [17] Hong, C. Y., Kim, N. K., Kwak, T. K., Lee, Y.: Extensions of zip rings.J. Pure Appl. Algebra 195 (2005), 231-242. Zbl 1071.16020, MR 2114273, 10.1016/j.jpaa.2004.08.025
Reference: [18] Hong, C. Y., Kim, N. K., Lee, Y.: Extensions of McCoy's theorem.Glasg. Math. J. 52 (2010), 155-159. Zbl 1195.16026, MR 2587825, 10.1017/S0017089509990243
Reference: [19] Jones, L. G., Weiner, L.: Advanced problems and solutions: Solutions 4419. Concerning a theorem of McCoy.Am. Math. Mon. 59 (1952), 336-337. MR 0048481, 10.1080/00029890.1952.11988133
Reference: [20] Keigher, W. F.: Adjunctions and comonads in differential algebra.Pac. J. Math. 59 (1975), 99-112. Zbl 0327.12104, MR 0392957, 10.2140/pjm.1975.59.99
Reference: [21] Keigher, W. F.: On the ring of Hurwitz series.Commun. Algebra 25 (1997), 1845-1859. Zbl 0884.13013, MR 1446134, 10.1080/00927879708825957
Reference: [22] Keigher, W. F., Pritchard, F. L.: Hurwitz series as formal functions.J. Pure Appl. Algebra 146 (2000), 291-304. Zbl 0978.12007, MR 1742345, 10.1016/S0022-4049(98)00099-1
Reference: [23] Krempa, J.: Some examples of reduced rings.Algebra Colloq. 3 (1996), 289-300. Zbl 0859.16019, MR 1422968
Reference: [24] Leroy, A., Matczuk, J.: Zip property of certain ring extensions.J. Pure Appl. Algebra 220 (2016), 335-345. Zbl 1334.16019, MR 3393464, 10.1016/j.jpaa.2015.06.015
Reference: [25] Liu, Z., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings.Glasg. Math. J. 48 (2006), 217-229. Zbl 1110.16003, MR 2256973, 10.1017/S0017089506003016
Reference: [26] McCoy, N. H.: Remarks on divisors of zero.Am. Math. Mon. 49 (1942), 286-295. Zbl 0060.07703, MR 0006150, 10.1080/00029890.1942.11991226
Reference: [27] McCoy, N. H.: Annihilators in polynomial rings.Am. Math. Mon. 64 (1957), 28-29. Zbl 0077.25903, MR 0082486, 10.1080/00029890.1957.11988927
Reference: [28] Paykan, K.: Nilpotent elements of skew Hurwitz series rings.Rend. Circ. Mat. Palermo (2) 65 (2016), 451-458. Zbl 1353.16046, MR 3571322, 10.1007/s12215-016-0245-y
Reference: [29] Paykan, K.: A study on skew Hurwitz series rings.Ric. Mat. 66 (2017), 383-393. Zbl 1394.16050, MR 3715907, 10.1007/s11587-016-0305-9
Reference: [30] Paykan, K.: Principally quasi-Baer skew Hurwitz series rings.Bull. Unione Mat. Ital. 10 (2017), 607-616. Zbl 1381.16042, MR 3736710, 10.1007/s40574-016-0098-5
Reference: [31] Rege, M. B., Chhawchharia, S.: Armendariz rings.Proc. Japan Acad., Ser. A 73 (1997), 14-17. Zbl 0960.16038, MR 1442245, 10.3792/pjaa.73.14
Reference: [32] Sharma, R. K., Singh, A. B.: Unified extensions of strongly reversible rings and links with other classic ring theoretic properties.J. Indian Math. Soc., New Ser. 85 (2018), 434-448. Zbl 1463.16047, MR 3816380, 10.18311/jims/2018/20986
Reference: [33] Sharma, R. K., Singh, A. B.: Zip property of skew Hurwitz series rings and modules.Serdica Math. J. 45 (2019), 35-54. MR 3971446
Reference: [34] Sharma, R. K., Singh, A. B.: Skew Hurwitz series rings and modules with Beachy-Blair conditions.Kragujevac J. Math. 47 (2023), 511-521. MR 4654453, 10.46793/KgJMat2304.511S
Reference: [35] Singh, A. B., Dixit, V. N.: Unification of extensions of zip rings.Acta Univ. Sapientiae, Math. 4 (2012), 168-181. Zbl 1295.16015, MR 3123260
Reference: [36] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5
Reference: [37] Taft, E. J.: Hurwitz invertibility of linearly recursive sequences.Combinatorics, Graph Theory, and Computing Congressus Numerantium 73. Utilitas Mathematica, Winnipeg (1990), 37-40. Zbl 0694.16006, MR 1041834
Reference: [38] Tominaga, H.: On $s$-unital rings.Math. J. Okayama Univ. 18 (1976), 117-134. Zbl 0335.16020, MR 0453801
Reference: [39] Zelmanowitz, J. M.: The finite intersection property on annihilator right ideals.Proc. Am. Math. Soc. 57 (1976), 213-216. Zbl 0333.16014, MR 0419512, 10.1090/S0002-9939-1976-0419512-6
.

Files

Files Size Format View
MathBohem_149-2024-1_3.pdf 252.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo