[2] Bolat, Y., Alzabut, J. O.:
On the oscillation of higher-order half-linear delay difference equations. Appl. Maths. Inf. Sci. 6 (2012), 423-427.
MR 2970650
[3] Chatzarakis, G. E., Grace, S. R.:
Oscillation of 2nd-order nonlinear noncanonical difference equations with deviating arguments. J. Nonlinear Model. Anal. 3 (2021), 495-504.
DOI 10.12150/jnma.2021.495
[5] Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E.:
Oscillations of second-order noncanonical advanced difference equations via canonical transformation. Carpathian J. Math. 38 (2022), 383-390.
DOI 10.37193/CJM.2022.02.09 |
MR 4385540
[6] Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S.:
Oscillatory behavior of second-order non-canonical retarded difference equations. Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages.
MR 4371516 |
Zbl 7612942
[7] El-Morshedy, H. A.:
Oscillation and nonoscillation criteria for half-linear second order difference equations. Dyn. Syst. Appl. 15 (2006), 429-450.
MR 2367656
[9] Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E.:
Oscillation results using linearization of quasi-linear second order delay difference equations. Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages.
DOI 10.1007/s00009-021-01920-4 |
MR 4330445 |
Zbl 1477.39004
[12] Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E.:
Oscillation of second-order half-linear retarded difference equations via canonical transform. Nonauton. Dyn. Syst. 9 (2022), 163-169.
DOI 10.1515/msds-2022-0151 |
MR 4471376 |
Zbl 1497.39008
[16] Zhang, B.-G., Cheng, S. S.:
Oscillation criteria and comparison theorems for delay difference equations. Fasc. Math. 25 (1995), 13-32.
MR 1339622 |
Zbl 0830.39005