Previous |  Up |  Next

Article

Title: Multi-type synchronization of impulsive coupled oscillators via topology degree (English)
Author: Bi, Yingjie
Author: Cai, Zhidan
Author: Wang, Shuai
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 2
Year: 2024
Pages: 185-207
Summary lang: English
.
Category: math
.
Summary: The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions in a relevant impulsive system. Some existence theorems about rotating periodic solutions for a non-homogeneous linear impulsive system and a nonlinear perturbation system are established by topology degree theory. Finally, we give two examples to show synchronization behaviors in impulsive coupled oscillator networks. (English)
Keyword: synchronization
Keyword: impulsive coupled oscillator
Keyword: rotating periodic solution
Keyword: impulsive system
MSC: 34A37
MSC: 34C25
MSC: 34D06
DOI: 10.21136/AM.2024.0183-23
.
Date available: 2024-04-04T12:08:13Z
Last updated: 2024-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152312
.
Reference: [1] Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, New York (1993). Zbl 0815.34001, MR 1266625, 10.1201/9780203751206
Reference: [2] Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves.Phys. Rev. Lett. 72 (1994), 164-167. 10.1103/PhysRevLett.72.164
Reference: [3] Cui, X., Li, H.-L., Zhang, L., Hu, C., Bao, H.: Complete synchronization for discrete-time fractional-order coupled neural networks with time delays.Chaos Solitons Fractals 174 (2023), Article ID 113772, 8 pages. MR 4612680, 10.1016/j.chaos.2023.113772
Reference: [4] Dong, X., Yang, X.: Affine-periodic solutions for perturbed systems.J. Appl. Anal. Comput. 12 (2022), 754-769. MR 4398690, 10.11948/20210309
Reference: [5] Eilertsen, J., Schnell, S., Walcher, S.: Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks.Bull. Math. Biol. 85 (2023), Article ID 48, 75 pages. Zbl 1519.92362, MR 4581145, 10.1007/s11538-023-01150-7
Reference: [6] Fečkan, M., Liu, K., Wang, J. R.: $(\omega,\Bbb{T})$-periodic solutions of impulsive evolution equations.Evol. Equ. Control Theory 11 (2022), 415-437. Zbl 1483.34082, MR 4376330, 10.3934/eect.2021006
Reference: [7] Fokken, E., Göttlich, S., Kolb, O.: Modeling and simulation of gas networks coupled to power grids.J. Eng. Math. 119 (2019), 217-239. Zbl 1437.35481, MR 4039640, 10.1007/s10665-019-10026-6
Reference: [8] Huygens, C.: Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae.F. Muguet, Paris (1673), Latin.
Reference: [9] Jiang, H., Liu, Y., Zhang, L., Yu, J.: Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators.Commun. Nonlinear Sci. Numer. Simul. 39 (2016), 199-208. Zbl 1510.34068, MR 3498480, 10.1016/j.cnsns.2016.02.033
Reference: [10] Karimaghaee, P., Heydari, Z. R.: Lag-synchronization of two different fractional-order time-delayed chaotic systems using fractional adaptive sliding mode controller.Int. J. Dyn. Control 9 (2021), 211-224. MR 4215925, 10.1007/s40435-020-00628-9
Reference: [11] Li, H.-J., Xu, W., Song, S., Wang, W.-X., Perc, M.: The dynamics of epidemic spreading on signed networks.Chaos Solitons Fractals 151 (2021), Article ID 111294, 7 pages. Zbl 1498.68022, MR 4296951, 10.1016/j.chaos.2021.111294
Reference: [12] Liu, G., Li, Y., Yang, X.: Existence and multiplicity of rotating periodic solutions for Hamiltonian systems with a general twist condition.J. Differ. Equations 369 (2023), 229-252. Zbl 07707638, MR 4603828, 10.1016/j.jde.2023.06.001
Reference: [13] Marichal, R. L., Piñeiro, J. D.: Analysis of multiple quasi-periodic orbits in recurrent neural networks.Neurocomput. 162 (2015), 85-95. 10.1016/j.neucom.2015.04.001
Reference: [14] Meng, X., Li, Y.: Affine-periodic solutions for discrete dynamical systems.J. Appl. Anal. Comput. 5 (2015), 781-792. Zbl 1448.39016, MR 3367467, 10.11948/2015059
Reference: [15] Pan, L., Cao, J.: Anti-periodic solution for delayed cellular neural networks with impulsive effects.Nonlinear Anal., Real World Appl. 12 (2011), 3014-3027. Zbl 1231.34121, MR 2832944, 10.1016/j.nonrwa.2011.05.002
Reference: [16] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries.Nat. Commun. 5 (2014), Article ID 4079, 8 pages. 10.1038/ncomms5079
Reference: [17] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: Phase synchronization of chaotic oscillators.Phys. Rev. Lett. 76 (1996), 1804-1807. MR 1869044, 10.1103/PhysRevLett.76.1804
Reference: [18] Samojlenko, A. M., Perestyuk, N. A.: Periodic and almost-periodic solutions of impulsive differential equations.Ukr. Math. J. 34 (1982), 55-61. Zbl 0513.34047, MR 0647932, 10.1007/BF01086134
Reference: [19] Sun, W., Guan, J., Lü, J., Zheng, Z., Yu, X., Chen, S.: Synchronization of the networked system with continuous and impulsive hybrid communications.IEEE Trans. Neural Netw. Learn. Syst. 31 (2020), 960-971. MR 4104636, 10.1109/TNNLS.2019.2911926
Reference: [20] Wang, C., Li, Y.: Affine-periodic solutions for nonlinear dynamic equations on time scales.Adv. Difference Equ. 2015 (2015), Article ID 286, 16 pages. Zbl 1351.34110, MR 3397510, 10.1186/s13662-015-0634-0
Reference: [21] Wang, S., Li, Y.: Synchronization or cluster synchronization in coupled Van der Pol oscillators networks with different topological types.Phys. Scripta 97 (2022), Article ID 035205, 16 pages. 10.1088/1402-4896/ac46f3
Reference: [22] Wang, S., Li, Y., Yang, X.: Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens' coupling.Physica D 434 (2022), Article ID 133208, 22 pages. Zbl 1498.34113, MR 4393340, 10.1016/j.physd.2022.133208
Reference: [23] Wang, S., Wang, L., Yang, X.: Numerical method for finding synchronous solutions of the coupled oscillator networks.J. Optim. Theory Appl. 199 (2023), 258-272. MR 4651066, 10.1007/s10957-023-02282-5
Reference: [24] Wang, C., Yang, X., Chen, X.: Affine-periodic solutions for impulsive differential systems.Qual. Theory Dyn. Syst. 19 (2020), Article ID 1, 22 pages. Zbl 1451.34052, MR 4052028, 10.1007/s12346-019-00337-5
Reference: [25] Wang, S., Yang, X., Li, Y.: The mechanism of rotating waves in a ring of unidirectionally coupled Lorenz systems.Commun. Nonlinear Sci. Numer. Simul. 90 (2020), Article ID 105370, 12 pages. Zbl 1498.34121, MR 4110037, 10.1016/j.cnsns.2020.105370
Reference: [26] Xing, J., Yang, X., Li, Y.: Affine-periodic solutions by averaging methods.Sci. China, Math. 61 (2018), 439-452. Zbl 1459.34108, MR 3762236, 10.1007/s11425-016-0455-1
Reference: [27] Xing, J., Yang, X., Li, Y.: Lyapunov center theorem on rotating periodic orbits for Hamiltonian systems.J. Differ. Equations 363 (2023), 170-194. Zbl 1520.70015, MR 4562787, 10.1016/j.jde.2023.03.016
Reference: [28] Xu, F., Yang, X., Li, Y., Liu, M.: Existence of affine-periodic solutions to Newton affine-periodic systems.J. Dyn. Control Syst. 25 (2019), 437-455. Zbl 1421.34026, MR 3953149, 10.1007/s10883-018-9425-8
Reference: [29] Zhang, L., Jiang, H., Bi, Q.: Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems.Nonlinear Dyn. 59 (2010), 529-534. Zbl 1189.93085, MR 2599956, 10.1007/s11071-009-9559-z
Reference: [30] Zhang, Y., Yang, X., Li, Y.: Affine-periodic solutions for dissipative systems.Abstr. Appl. Anal. 2013 (2013), Article ID 157140, 4 pages. Zbl 1303.34033, MR 3147840, 10.1155/2013/157140
Reference: [31] Zhong, X., Wang, S.: Learning coupled oscillators system with reservoir computing.Symmetry 14 (2022), Article ID 1084, 14 pages. 10.3390/sym14061084
Reference: [32] Zhou, W., Sun, Y., Zhang, X., Shi, P.: Cluster synchronization of coupled neural networks with Lévy noise via event-triggered pinning control.IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 6144-6157. MR 4506265, 10.1109/TNNLS.2021.3072475
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo