Previous |  Up |  Next

Article

Title: Development of small and large compressive pulses in two-phase flow (English)
Author: Palo, Nishi Deepa
Author: Jena, Jasobanta
Author: Chadha, Meera
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 2
Year: 2024
Pages: 233-255
Summary lang: English
.
Category: math
.
Summary: The evolutions of small and large compressive pulses are studied in a two-phase flow of gas and dust particles with a variable azimuthal velocity. The method of relatively undistorted waves is used to study the mechanical pulses of different types in a rotational, axisymmetric dusty gas. The results obtained are compared with that of nonrotating medium. Asymptotic expansion procedure is used to discuss the nonlinear theory of geometrical acoustics. The influence of the solid particles and the rotational effect of the medium on the distortion are investigated. In a rotational flow it is observed that with the increase in the value of rotational parameter, the steepening of the pulses also increases. The presence of dust in the rotational flow delays the onset of shock formation thereby increasing the distance where the shock is formed first. The rotational and the dust parameters are observed to have the same effect on the shock strength. (English)
Keyword: hyperbolic system of equations
Keyword: shock waves, asymptotic expansion
MSC: 35A18
MSC: 35B40
DOI: 10.21136/AM.2024.0107-23
.
Date available: 2024-04-04T12:09:54Z
Last updated: 2024-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152314
.
Reference: [1] Anand, R. K.: Shock jump relations for a dusty gas atmosphere.Astrophys. Space Sci. 349 (2014), 181-195. 10.1007/s10509-013-1638-4
Reference: [2] Chadha, M., Jena, J.: Propagation of weak waves in a dusty, van der Waals gas.Meccanica 51 (2016), 2145-2157 \99999DOI99999 10.1007/s11012-015-0354-2 \goodbreak. Zbl 1386.76179, MR 3528480, 10.1007/s11012-015-0354-2
Reference: [3] Chadha, M., Jena, J.: Impact of dust in the decay of blast waves produced by a nuclear explosion.Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476 (2020), Article ID 20200105, 22 pages. Zbl 1472.76058, MR 4126476, 10.1098/rspa.2020.0105
Reference: [4] Chaturani, P.: Strong cylindrical shocks in a rotating gas.Appl. Sci. Res. 23 (1971), 197-211. Zbl 0222.76068, 10.1007/BF00413198
Reference: [5] Jena, J., Sharma, V. D.: Propagation and interaction of waves in a non-ideal gas.ZAMM, Z. Angew. Math. Mech. 81 (2001), 417-429. Zbl 1012.76080, 10.1002/1521-4001(200106)81:6<417::AID-ZAMM417>3.0.CO;2-9
Reference: [6] Levin, V. A., Skopina, G. A.: Detonation wave propagation in rotational gas flows.J. App. Mech. Tech. Phys. 45 (2004), 457-460 translated from Prikl. Mekh. Tekh. Fiz. 45 2004 3-6. Zbl 1049.76037, MR 2075127, 10.1023/B:JAMT.0000030320.77965.c1
Reference: [7] Nath, G.: Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas.Shock Waves 24 (2014), 415-428. MR 3357255, 10.1007/s00193-013-0474-3
Reference: [8] Nath, G., Sahu, P. K., Chaurasia, S.: Self-similar solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with magnetic field.Chinese J. Phys. 58 (2019), 280-293. 10.1016/j.cjph.2019.02.007
Reference: [9] Pai, S. I.: Two Phase Flows.Vieweg Tracts in Pure and Applied Physics 3. Vieweg, Braunschweig (1977). Zbl 0382.76081, MR 0452096, 10.1007/978-3-322-86348-5
Reference: [10] Palo, N. D., Jena, J., Chadha, M.: An analytical approach to study kinematics of shock waves in a dusty, cylindrical gas flow.ZAMM, Z. Angew. Math. Mech. 102 (2022), Article ID e202200019, 20 pages. MR 4559166, 10.1002/zamm.202200019
Reference: [11] Parker, D. F., Seymour, B. R.: Finite amplitude one-dimensional pulses in an inhomogeneous granular material.Arch. Ration. Mech. Anal. 72 (1980), 265-284. Zbl 0423.73088, MR 0549644, 10.1007/BF00281592
Reference: [12] Radha, C., Sharma, V. D.: Propagation and interaction of waves in a relaxing gas.Philos. Trans. R. Soc. Lond., Ser. A 352 (1995), 169-195. Zbl 0844.76042, 10.1098/rsta.1995.0062
Reference: [13] Sahu, P. K.: Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field.Chaos Solitons Fractals 135 (2020), Article ID 109739, 22 pages. Zbl 1489.76034, MR 4083012, 10.1016/j.chaos.2020.109739
Reference: [14] Varley, E., Cumberbatch, E.: Non-linear, high frequency sound waves.J. Inst. Math. Appl. 2 (1966), Article ID 133-143. Zbl 0151.42601, MR 0197027, 10.1093/imamat/2.2.133
Reference: [15] Varley, E., Cumberbatch, E.: Large amplitude waves in stratified media: Acoustic pulses.J. Fluid Mech. 43 (1970), 513-537. Zbl 0207.26102, MR 0269183, 10.1017/S0022112070002550
Reference: [16] Vishwakarma, J. P., Nath, G.: Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux.Phys. Scr. 81 (2010), Article ID 045401, 9 pages. Zbl 1273.76385, MR 2825996, 10.1088/0031-8949/81/04/045401
Reference: [17] Vishwakarma, J. P., Nath, G.: Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 154-169. Zbl 1242.76106, MR 2825996, 10.1016/j.cnsns.2011.04.021
Reference: [18] Whitham, G. B.: On the propagation of weak shock waves.J. Fluid Mech. 1 (1956), 290-318. Zbl 0073.21103, MR 0082322, 10.1017/S0022112056000172
Reference: [19] Whitham, G. B.: Linear and Nonlinear Waves.Pure and Applied Mathematics. John Wiley & Sons, New York (1974). Zbl 0373.76001, MR 0483954, 10.1002/9781118032954
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo