[1] Azuma, S. I., Yoshida, T., Sugie, T.: 
Structural oscillatority analysis of Boolean networks. IEEE T. Control Netw. 6 (2018), 464-473. 
DOI  | 
MR 3958930[2] Chen, S. Q., Wu, Y. H., Macauley, M., Sun, X. M.: 
Monostability and bistability of Boolean networks using semi-tensor products. IEEE T. Contr. Syst. Theory 6 (2018), 1379-1390. 
DOI  | 
MR 4052461[3] Cheng, D.: 
Disturbance decoupling of Boolean control networks. IEEE Trans. Automat. Control 56 (2011), 2-10. 
DOI  | 
MR 2777196[4] Cheng, D. Z., Li, C., He, F.: 
Observability of Boolean networks via set controllability approach. Syst. Control Lett. 115 (2018), 22-25. 
DOI  | 
MR 3786117[5] Cheng, D., Qi, H., Liu, T., Wang, Y.: 
A note on observability of Boolean control networks. Syst. Control Lett. 87 (2016), 76-82. 
DOI  | 
MR 3433244[6] Cheng, D. Z., Qi, H. S., Zhao, Y.: 
An Introduction to Semi-Tensor Product of Matrices and Its Applications. World Scientific Publishing Co. Pte. Ltd., Singapore 2012. 
MR 2963878[7] Cheng, D. Z., Wu, Y. H., Zhao, G., Fu, S.: 
A comprehensive survey on STP approach to finite games. J. Syst. Sci. Complex. 34 (2021), 1666-1680. 
DOI  | 
MR 4331641[8] Cui, Y. X., Li, S., Liu, F. Q., Wu, Y. H.: 
Set reachability and observability of Boolean multiplex control networks[J/OL]. J. Liaocheng University (Natural Science Edition) (2023), 1-11. 
DOI  | 
MR 3379151[9] Cui, Y. X., Li, S., Shan, Y. X., Liu, F. Q.: 
Finite-time set reachability of probabilistic Boolean multiplex control networks. Appl. Sci. Basel 12 (2022), 883. 
DOI [10] Fu, S., Pan, Y., Feng, J. E., Zhao, J.: 
Strategy optimisation for coupled evolutionary public good games with threshold. Int. J. Control 95, (2022), 562-571. 
DOI  | 
MR 4372084[11] Guo, Y. Q.: 
Observability of Boolean control networks using parallel extension and set reachability. IEEE T. Neur. Net. Learn. 29 (2018), 6402-6408. 
DOI  | 
MR 3891710[12] Heidel, J., Maloney, J., Farrow, C., Rogers, J.A.: 
Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int. J. Bifurcat. Chaos 13 (2003), 535-552. 
DOI 10.1142/S0218127403006765 | 
MR 1981054[13] Kauffman, S. A.: 
Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22 (1968), 437-467. 
DOI  | 
MR 2436652[14] Kauffman, S. A.: 
At home in the universe. Math. Soc. Sci. 1 (1997), 94-95. 
MR 1626501[16] Laschov, D., Margaliot, M., Even, G.: 
Observability of Boolean networks: A graph-theoretic approach. Automatica 49 (2013), 2351-2362. 
DOI  | 
MR 3072626[17] Le, S. T., Wu, Y. H., Toyoda, M.: 
A congestion game framework for service chain composition in NFV with function benefit. Inform. Science 514 (2020), 512-522. 
DOI  | 
MR 4046121[18] Li, Y., Feng, J. E., Wang, B.: 
Output feedback observability of switched Boolean control networks. Infrom. Sci. 612 (2022), 612-625. 
DOI [19] Li, Y., Feng, J. E., Zhu, S.: 
Controllability and reachability of periodically time-variant mixed-valued logical control networks. Circ. Syst. Signal PR 40 (2021), 1-16. 
DOI  | 
MR 1396882[20] Fornasini, E., Valcher, M.: 
Observability and reconstructibility of probabilistic Boolean networks. IEEE Contr. Syst. Lett. 4 (2019), 319-324. 
DOI  | 
MR 4211304[21] Li, F., Ho, D.: 
Observability of Boolean networks with redundant channels. IEEE T. Circuits-II. 67 (2019), 1989-1993. 
DOI [22] Li, F., Sun, J.: 
Observability analysis of Boolean control networks with impulsive effects. IET Control Theory A 5 (2011), 1609-1616. 
DOI  | 
MR 2883333[23] Li, F., Sun, J., Wu, Q.: 
Observability of Boolean control networks with state time delays. IEEE Trans. Neural Netw. 22 (2011), 948-954. 
DOI [24] Liu, Y., Zhong, J., Ho, D. W., Gui, W.: 
Minimal observability of Boolean networks. Sci. China Inform. Sci. 65 (2022), 1-12. 
DOI  | 
MR 4404189[25] Liu, Y., Wang, L., Yang, Y., Wu, Z. G.: 
Minimal observability of Boolean control networks. Syst. Control Lett. 163 (2022), 105204. 
DOI  | 
MR 4405482[26] Li, Y., Feng, J. E., Wang, B.: 
Observability of singular Boolean control networks with state delays. J. Franklin I. 359 (2022), 331-351. 
DOI  | 
MR 4364957[27] Li, R., Zhang, Q., Zhang, J., Chu, T.: 
Distributional observability of probabilistic Boolean networks. Syst. Control Lett. 156 (2021), 105001. 
DOI  | 
MR 4299865[28] Liu, Y., Cao, J., Wang, L., Wu, Z. G.: 
On pinning control reachability of probabilistic Boolean control networks. IET Control Theory A 63 (2020), 1-3. 
DOI  | 
MR 4013798[29] Liu, Z., Zhong, J., Liu, Y., Gui, W.: 
Weak stabilization of Boolean networks under state-flipped control. IEEE T. Neur. Net. Learn. 5 (2021), 2693-2700. 
DOI  | 
MR 4589423[30] Lu, J., Zhong, J., Huang, C., Cao, J.: 
On pinning controllability of Boolean control networks. IEEE T. Automat. Control 61 (2015), 1658-1663. 
DOI  | 
MR 3508713[31] Machado, A. M., Bazzan, A. L.: Self-adaptation in a network of social drivers: Using random boolean networks. In: Proc. 2011 Workshop on Organic Computing, Paris 2011, pp. 33-40.
[32] Meng, M., Li, L.: 
Stability and pinning stabilization of markovian jump Boolean networks. IEEE T. Circuits II 69 (2022), 3565-3569. 
DOI [33] Pan, Q., Zhong, J., Lin, L., Lin, B., Liu, X.: 
Finite time observability of probabilistic Boolean control networks. Asian J. Control 25 (2022), 325-334. 
DOI  | 
MR 4562337[34] Toyoda, M., Wu, Y. H.: 
Mayer-type optimal control of probabilistic Boolean control network with uncertain selection probabilities. IEEE T. Cybernetics 51 (2021), 3079-3092. 
DOI [35] Wang, J., Liu, Y., Li, H.: 
Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks. IEEE Access 8 (2020), 111995-112002. 
DOI [36] Wang, L., Liu, Y., Wu, Z. G., Lu, J., Yu, L.: 
Stabilization and finite stabilization of probabilistic Boolean control networks. IEEE T. Syst. Man CY-S. 51 (2019), 1599-1566. 
DOI  | 
MR 3901770[37] Wu, Y. H., Cheng, D. Z., Ghosh, B. K., Shen, T.: 
Recent advances in optimization and game theoretic control for networked systems. Asian J. Control 21 (2019), 2493-2512. 
DOI  | 
MR 4067608[38] Wu, G., Dai, L., Liu, Z., Chen, T., Pan, J.: 
Online observability of Boolean control networks. IFAC - PapersOnLine 53 (2020), 1057-1064. 
DOI [39] Wu, Y. H., Guo, Y. Q., Toyoda, M.: 
Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE T. Neur. Net. Learn. 32 (2020), 2910-2924. 
DOI  | 
MR 4285216[40] Wu, Y. H., Sun, X. M., Zhao, X., Shen, T. L.: 
Optimal control of Boolean control networks with average cost: A policy iteration approach. Automatica 100 (2019), 378-387. 
DOI  | 
MR 3885198[41] Wu, Y. H., Xu, J., Sun, X., Wang, W.: 
Observability of Boolean multiplex control networks. Sci. Rep. 7 (2017), 46495. 
DOI [42] Yu, Y., Meng, M., Feng, J. E.: 
Observability of Boolean networks via matrix equations. Automatica 111 (2020), 108621. 
DOI  | 
MR 4039368[43] Zhu, S., Feng, J. E., Zhao, J.: 
State feedback for set stabilization of markovian jump Boolean control networks. Discrete Cont. Dyn. Syst. 14 (2021), 1591-1605. 
DOI  | 
MR 4220582[44] Zhu, Q., Liu, Y., Lu, J., Cao, J.: 
Controllability and observability of Boolean control networks via sampled-data control. IEEE T. Control Netw. 6 (2018), 1291-1301. 
DOI  | 
MR 4052453[45] Zhang, Q. L., Feng, J. E., Wang, B.: 
Set reachability of markovian jump Boolean networks and its applications. IET Control Theory A 14 (2020), 2914-2923. 
DOI  | 
MR 4418022[46] Zhang, K., Zhang, L.: 
Observability of Boolean control networks: A unified approach based on finite automata. IEEE T. Automat. Control 61 (2016), 2733-2738. 
DOI  | 
MR 3545104[47] Zhang, K., Zhang, L., Xie, L.: 
Finite automata approach to observability of switched Boolean control networks. Nonlinear Anal-Hybri. 19 (2016), 186-197. 
DOI  | 
MR 3425354[48] Zhong, J., Lu, J., Huang, T., Ho, D. W.: 
Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE T. Cybernetics 47 (2017), 3482-3493. 
DOI [49] Zhou, R., Guo, Y. Q., Gui, W.: 
Set reachability and observability of probabilistic Boolean networks. Automatica 106 (2019), 230-241. 
DOI  | 
MR 3952584[50] Zhu, Q., Liu, Y., Lu, J., Cao, J.: 
Observability of Boolean control networks. Sci. China Inform. Sci. 61 (2018), 1-12. 
DOI  | 
MR 3718227