Previous |  Up |  Next

Article

Title: A dual-parameter double-step splitting iteration method for solving complex symmetric linear equations (English)
Author: Li, Beibei
Author: Cui, Jingjing
Author: Huang, Zhengge
Author: Xie, Xiaofeng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 3
Year: 2024
Pages: 311-337
Summary lang: English
.
Category: math
.
Summary: We multiply both sides of the complex symmetric linear system $Ax=b$ by $1-{\rm i}\omega $ to obtain a new equivalent linear system, then a dual-parameter double-step splitting (DDSS) method is established for solving the new linear system. In addition, we present an upper bound for the spectral radius of iteration matrix of the DDSS method and obtain its quasi-optimal parameter. Theoretical analyses demonstrate that the new method is convergent when some conditions are satisfied. Some tested examples are given to illustrate the effectiveness of the proposed method. (English)
Keyword: DDSS iteration method
Keyword: linear equations
Keyword: SPD matrix
Keyword: SPSD matrix
Keyword: convergence property
MSC: 65F10
MSC: 65H10
DOI: 10.21136/AM.2024.0133-23
.
Date available: 2024-05-17T07:46:22Z
Last updated: 2024-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152352
.
Reference: [1] Arridge, S. R.: Optical tomography in medical imaging.Inverse Probl. 15 (1999), R41--R93. Zbl 0926.35155, MR 1684463, 10.1088/0266-5611/15/2/022
Reference: [2] Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems.Numer. Linear Algebra Appl. 7 (2000), 197-218. Zbl 1051.65025, MR 1762967, 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
Reference: [3] Bai, Z.-Z.: Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems.Appl. Math. Comput. 109 (2000), 273-285. Zbl 1026.65028, MR 1738197, 10.1016/S0096-3003(99)00027-2
Reference: [4] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems.J. Comput. Appl. Math. 283 (2015), 71-78. Zbl 1311.65032, MR 3317271, 10.1016/j.cam.2015.01.025
Reference: [5] Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts.Numer. Linear Algebra Appl. 25 (2018), Article ID e2116, 19 pages. Zbl 1513.65063, MR 3826931, 10.1002/nla.2116
Reference: [6] Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems.Computing 87 (2010), 93-111. Zbl 1210.65074, MR 2640009, 10.1007/s00607-010-0077-0
Reference: [7] Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems.Numer. Algorithms 56 (2011), 297-317. Zbl 1209.65037, MR 2755673, 10.1007/s11075-010-9441-6
Reference: [8] Bai, Z.-Z., Golub, G. H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems.IMA J. Numer. Anal. 27 (2007), 1-23. Zbl 1134.65022, MR 2289269, 10.1093/imanum/drl017
Reference: [9] Bai, Z.-Z., Golub, G. H., Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems.SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. Zbl 1036.65032, MR 1972670, 10.1137/S0895479801395458
Reference: [10] Bai, Z.-Z., Golub, G. H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems.Numer. Math. 98 (2004), 1-32. Zbl 1056.65025, MR 2076052, 10.1007/s00211-004-0521-1
Reference: [11] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations.Other Titles in Applied Mathematics 173. SIAM, Philadelphia (2021). Zbl 07417710, MR 4362581, 10.1137/1.9781611976632
Reference: [12] Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems.IMA J. Numer. Anal. 28 (2008), 598-618. Zbl 1145.65022, MR 2433214, 10.1093/imanum/drm039
Reference: [13] Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems.ETNA, Electron. Trans. Numer. Anal. 18 (2004), 49-64. Zbl 1066.65048, MR 2083294
Reference: [14] Chen, F., Li, T.-Y., Lu, K.-Y., Muratova, G. V.: Modified QHSS iteration methods for a class of complex symmetric linear systems.Appl. Numer. Math. 164 (2021), 3-14. Zbl 1460.65033, MR 4207970, 10.1016/j.apnum.2020.01.018
Reference: [15] Dehghan, M., Dehghani-Madiseh, M., Hajarian, M.: A generalized preconditioned MHSS method for a class of complex symmetric linear systems.Math. Model. Anal. 18 (2013), 561-576. Zbl 1281.65058, MR 3175665, 10.3846/13926292.2013.839964
Reference: [16] Feriani, A., Perotti, F., Simoncini, V.: Iterative system solvers for the frequency analysis of linear mechanical systems.Comput. Methods Appl. Mech. Eng. 190 (2000), 1719-1739. Zbl 0981.70005, 10.1016/S0045-7825(00)00187-0
Reference: [17] Frommer, A., Lippert, T., Medeke, B., (Eds.), K. Schilling: Numerical Challenges in Lattice Quantum Chromodynamics.Lecture Notes in Computational Science and Engineering 15. Springer, Berlin (2000). Zbl 0957.00052, MR 1861777, 10.1007/978-3-642-58333-9
Reference: [18] Huang, Y., Chen, G.: A relaxed block splitting preconditioner for complex symmetric indefinite linear systems.Open Math. 16 (2018), 561-573. Zbl 1388.65033, MR 3812172, 10.1515/math-2018-0051
Reference: [19] Huang, Z.-G.: A new double-step splitting iteration method for certain block two-by-two linear systems.Comput. Appl. Math. 39 (2020), Article ID 193, 42 pages. Zbl 1463.65047, MR 4116897, 10.1007/s40314-020-01220-9
Reference: [20] Huang, Z.-G.: Efficient block splitting iteration methods for solving a class of complex symmetric linear systems.J. Comput. Appl. Math. 395 (2021), Article ID 113574, 21 pages. Zbl 1470.65054, MR 4246150, 10.1016/j.cam.2021.113574
Reference: [21] Huang, Z.-G.: Modified two-step scale-splitting iteration method for solving complex symmetric linear systems.Comput. Appl. Math. 40 (2021), Article ID 122, 35 pages. Zbl 1476.65041, MR 4248586, 10.1007/s40314-021-01514-6
Reference: [22] Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: Preconditioned accelerated generalized successive overrelaxation method for solving complex symmetric linear systems.Comput. Math. Appl. 77 (2019), 1902-1916. Zbl 1442.65041, MR 3926852, 10.1016/j.camwa.2018.11.024
Reference: [23] Li, B., Cui, J., Huang, Z., Xie, X.: On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems.Comput. Appl. Math. 41 (2022), Article ID 250, 23 pages. Zbl 1513.65076, MR 4455168, 10.1007/s40314-022-01942-y
Reference: [24] Li, C.-X., Wu, S.-L.: A single-step HSS method for non-Hermitian positive definite linear systems.Appl. Math. Lett. 44 (2015), 26-29. Zbl 1315.65032, MR 3311417, 10.1016/j.aml.2014.12.013
Reference: [25] Li, L., Huang, T.-Z., Liu, X.-P.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems.Numer. Linear Algebra Appl. 14 (2007), 217-235. Zbl 1199.65109, MR 2301913, 10.1002/nla.528
Reference: [26] Li, X., Yang, A.-L., Wu, Y.-J.: Lopsided PMHSS iteration method for a class of complex symmetric linear systems.Numer. Algorithms 66 (2014), 555-568. Zbl 1298.65058, MR 3225002, 10.1007/s11075-013-9748-1
Reference: [27] Pour, H. Noormohammadi, Goughery, H. Sadeghi: New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems.Numer. Algorithms 69 (2015), 207-225. Zbl 1317.65091, MR 3339219, 10.1007/s11075-014-9890-4
Reference: [28] Poirier, B.: Efficient preconditioning scheme for block partitioned matrices with structured sparsity.Numer. Linear Algebra Appl. 7 (2000), 715-726. Zbl 1051.65059, MR 1802367, 10.1002/1099-1506(200010/12)7:7/8<715::AID-NLA220>3.0.CO;2-R
Reference: [29] Shirilord, A., Dehghan, M.: Single step iterative method for linear system of equations with complex symmetric positive semi-definite coefficient matrices.Appl. Math. Comput. 426 (2022), Article ID 127111, 17 pages. Zbl 1511.65055, MR 4408297, 10.1016/j.amc.2022.127111
Reference: [30] Siahkoalaei, T. S., Salkuyeh, D. K.: A new double-step method for solving complex Helmholtz equation.Hacet. J. Math. Stat. 49 (2020), 1245-1260. Zbl 1478.65102, MR 4199075, 10.15672/hujms.494876
Reference: [31] Dijk, W. van, Toyama, F. M.: Accurate numerical solutions of the time-dependent Schrödinger equation.Phys. Rev. E 75 (2007), Article ID 036707, 10 pages. MR 2358574, 10.1103/PhysRevE.75.036707
Reference: [32] Wang, T., Zheng, Q., Lu, L.: A new iteration method for a class of complex symmetric linear systems.J. Comput. Appl. Math. 325 (2017), 188-197. Zbl 1365.65087, MR 3658905, 10.1016/j.cam.2017.05.002
Reference: [33] Wu, S.-L.: Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems.Numer. Linear Algebra Appl. 22 (2015), 338-356. Zbl 1363.65055, MR 3313262, 10.1002/nla.1952
Reference: [34] Xiao, X.-Y., Wang, X., Yin, H.-W.: Efficient single-step preconditioned HSS iteration methods for complex symmetric linear systems.Comput. Math. Appl. 74 (2017), 2269-2280. Zbl 1398.65053, MR 3718115, 10.1016/j.camwa.2017.07.007
Reference: [35] Xiao, X.-Y., Wang, X., Yin, H.-W.: Efficient preconditioned NHSS iteration methods for solving complex symmetric linear systems.Comput. Math. Appl. 75 (2018), 235-247. Zbl 1478.65023, MR 3758701, 10.1016/j.camwa.2017.09.004
Reference: [36] Yang, A.-L.: On the convergence of the minimum residual HSS iteration method.Appl. Math. Lett. 94 (2019), 210-216. Zbl 1411.65055, MR 3924568, 10.1016/j.aml.2019.02.031
Reference: [37] Yang, A.-L., Cao, Y., Wu, Y.-J.: Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems.BIT 59 (2019), 299-319. Zbl 1432.65033, MR 3921381, 10.1007/s10543-018-0729-6
Reference: [38] Zeng, M.-L.: Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts.IAENG, Int. J. Appl. Math. 51 (2021), 109-115.
Reference: [39] Zhang, J., Dai, H.: A new splitting preconditioner for the iterative solution of complex symmetric indefinite linear systems.Appl. Math. Lett. 49 (2015), 100-106. Zbl 1382.65083, MR 3361702, 10.1016/j.aml.2015.05.006
Reference: [40] Zhang, J.-H., Dai, H.: A new block preconditioner for complex symmetric indefinite linear systems.Numer. Algorithms 74 (2017), 889-903. Zbl 1366.65049, MR 3611559, 10.1007/s11075-016-0175-y
Reference: [41] Zhang, J., Wang, Z., Zhao, J.: Double-step scale splitting real-valued iteration method for a class of complex symmetric linear systems.Appl. Math. Comput. 353 (2019), 338-346. Zbl 1429.65073, MR 3916000, 10.1016/j.amc.2019.02.020
Reference: [42] Zhang, J.-L., Fan, H.-T., Gu, C.-Q.: An improved block splitting preconditioner for complex symmetric indefinite linear systems.Numer. Algorithms 77 (2018), 451-478. Zbl 1388.65031, MR 3748379, 10.1007/s11075-017-0323-z
Reference: [43] Zhang, W.-H., Yang, A.-L., Wu, Y.-J.: Minimum residual modified HSS iteration method for a class of complex symmetric linear systems.Numer. Algorithms 86 (2021), 1543-1559. Zbl 1470.65057, MR 4229637, 10.1007/s11075-020-00944-3
Reference: [44] Zheng, Z., Huang, F.-L., Peng, Y.-C.: Double-step scale splitting iteration method for a class of complex symmetric linear systems.Appl. Math. Lett. 73 (2017), 91-97. Zbl 1375.65056, MR 3659913, 10.1016/j.aml.2017.04.017
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo