Title: | Partitioning a planar graph without chordal 5-cycles into two forests (English) |
Author: | Wang, Yang |
Author: | Wang, Weifan |
Author: | Kong, Jiangxu |
Author: | Wang, Yiqiao |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 2 |
Year: | 2024 |
Pages: | 377-388 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008. (English) |
Keyword: | planar graph |
Keyword: | vertex-arboricity |
Keyword: | forest |
Keyword: | vertex partition |
MSC: | 05C15 |
DOI: | 10.21136/CMJ.2024.0065-23 |
. | |
Date available: | 2024-07-10T14:49:42Z |
Last updated: | 2024-07-15 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152446 |
. | |
Reference: | [1] Borodin, O. V., Ivanova, A. O.: Planar graphs without 4-cycles adjacent to 3-cycles are list vertex 2-arborable.J. Graph Theory 62 (2009), 234-240. Zbl 1180.05035, MR 2566928, 10.1002/jgt.20394 |
Reference: | [2] Chartrand, G., Kronk, H. V.: The point-arboricity of planar graphs.J. Lond. Math. Soc. 44 (1969), 612-616. Zbl 0175.50505, MR 0239996, 10.1112/jlms/s1-44.1.612 |
Reference: | [3] Chartrand, G., Kronk, H. V., Wall, C. E.: The point-arboricity of a graph.Isr. J. Math. 6 (1968), 169-175. Zbl 0164.54201, MR 0236049, 10.1007/BF02760181 |
Reference: | [4] Chen, M., Raspaud, A., Wang, W.: Vertex-arboricity of planar graphs without intersecting triangles.Eur. J. Comb. 33 (2012), 905-923. Zbl 1250.05062, MR 2889524, 10.1016/j.ejc.2011.09.017 |
Reference: | [5] Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.W. H. Freeman, New York (1979). Zbl 0411.68039, MR 0519066 |
Reference: | [6] Hakimi, S. L., Schmeichel, E. F.: A note on the vertex arboricity of a graph.SIAM J. Discrete Math. 2 (1989), 64-67. Zbl 0684.05028, MR 0976789, 10.1137/0402007 |
Reference: | [7] Huang, D., Shiu, W. C., Wang, W.: On the vertex-arboricity of planar graphs without 7-cycles.Discrete Math. 312 (2012), 2304-2315. Zbl 1245.05029, MR 2926103, 10.1016/j.disc.2012.03.035 |
Reference: | [8] Huang, D., Wang, W.: Vertex arboricity of planar graphs without chordal 6-cycles.Int. J. Comput. Math. 90 (2013), 258-272. Zbl 1278.05100, MR 3016834, 10.1080/00207160.2012.727989 |
Reference: | [9] Raspaud, A., Wang, W.: On the vertex-arboricity of planar graphs.Eur. J. Comb. 29 (2008), 1064-1075. Zbl 1144.05024, MR 2408378, 10.1016/j.ejc.2007.11.022 |
Reference: | [10] Stein, S. K.: $B$-sets and planar maps.Pac. J. Math. 37 (1971), 217-224. Zbl 0194.56101, MR 0306053, 10.2140/pjm.1971.37.217 |
Reference: | [11] Wang, Y., Wang, Y., Lih, K.-W.: Partitioning kite-free planar graphs into two forests.J. Graph Theory 106 (2024), 30-56. Zbl 7823339, MR 4730107, 10.1002/jgt.23062 |
. |
Fulltext not available (moving wall 24 months)