Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Maass form; automorphic form; Rankin-Selberg convolution
Summary:
We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
References:
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. DOI 10.1090/jams/860 | MR 3556291 | Zbl 1352.11065
[2] Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. DOI 10.24033/asens.1355 | MR 0533066 | Zbl 0406.10022
[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n,\Bbb{R})$. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511542923 | MR 2254662 | Zbl 1108.11039
[4] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math. 29 (1978), 443-462. DOI 10.1093/qmath/29.4.443 | MR 0517737 | Zbl 0394.10020
[5] Kim, H. H.: Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$. J. Am. Math. Soc. 16 (2003), 139-183. DOI 10.1090/S0894-0347-02-00410-1 | MR 1937203 | Zbl 1018.11024
[6] Kim, H. H., Shahidi, F.: Functorial products for GL$_2 \times \rm {GL}_3$ and the symmetric cube for GL$_2$. Ann. Math. (2) 155 (2002), 837-893. DOI 10.2307/3062134 | MR 1923967 | Zbl 1040.11036
[7] Langlands, R. P.: Problems in the theory of automorphic forms. Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. DOI 10.1007/BFb0079065 | MR 0302614 | Zbl 0225.14022
[8] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 153 (2022), 11453-11470. DOI 10.1093/imrn/rnac153 | MR 4609788 | Zbl 07711446
[10] Meurman, T.: On the order of the Maass $L$-function on the critical line. Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. MR 1058223 | Zbl 0724.11029
[11] Nelson, P. D.: Bounds for standard $L$-functions. Available at {\def\let \relax \brokenlink{ https://arxiv.org/abs/2109.15230}}\kern0pt (2021), 237 pages. DOI 10.48550/arXiv.2109.15230
[12] Perelli, A.: General $L$-functions. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. DOI 10.1007/BF01761499 | MR 0663975 | Zbl 0485.10030
[13] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I. Proc. Camb. Philos. Soc. 35 (1939), 351-356. DOI 10.1017/S0305004100021095 | MR 0000411 | Zbl 0021.39201
[14] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50 German. MR 0002626 | Zbl 0023.22201
Partner of
EuDML logo