Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
Summary:
Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
References:
[1] Abdelmoumen, B., Jeribi, A., Mnif, M.: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation. Extr. Math. 26 (2011), 61-73. MR 2908391 | Zbl 1283.47007
[2] Aiena, P., Triolo, S.: Some perturbation results through localized SVEP. Acta Sci. Math. 82 (2016), 205-219. DOI 10.14232/actasm-014-785-1 | MR 3526346 | Zbl 1374.47006
[3] Bhatia, R., Davis, C.: Perturbation of extended enumerations of eigenvalues. Acta Sci. Math. 65 (1999), 277-286. MR 1702207 | Zbl 0933.47015
[4] Bhatia, R., Elsner, L.: The Hoffman-Wielandt inequality in infinite dimensions. Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. DOI 10.1007/BF02867116 | MR 1314392 | Zbl 0805.47017
[5] Chaker, W., Jeribi, A., Krichen, B.: Demicompact linear operators, essential spectrum and some perturbation results. Math. Nachr. 288 (2015), 1476-1486. DOI 10.1002/mana.201200007 | MR 3395822 | Zbl 1343.47015
[6] Gil', M. I.: Lower bounds for eigenvalues of Schatten-von Neumann operators. JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. MR 2345921 | Zbl 1133.47016
[7] Gil', M. I.: Sums of real parts of eigenvalues of perturbed matrices. J. Math. Inequal. 4 (2010), 517-522. DOI 10.7153/jmi-04-46 | MR 2777268 | Zbl 1213.15016
[8] Gil', M. I.: Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators. J. Funct. Anal. 267 (2014), 3500-3506. DOI 10.1016/j.jfa.2014.06.019 | MR 3261118 | Zbl 1359.47016
[9] Gil', M. I.: A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators. Funct. Anal. Approx. Comput. 7 (2015), 35-38. MR 3313254 | Zbl 1355.47011
[10] Gil', M. I.: Inequalities for eigenvalues of compact operators in a Hilbert space. Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. DOI 10.1142/S0219199715500224 | MR 3454622 | Zbl 1336.47022
[11] Gil', M. I.: Operator Functions and Operator Equations. World Scientific, Hackensack (2018). DOI 10.1142/10482 | MR 3751395 | Zbl 1422.47004
[12] Gil', M. I.: Norm estimates for resolvents of linear operators in a Banach space and spectral variations. Adv. Oper. Theory 4 (2019), 113-139. DOI 10.15352/aot.1801-1293 | MR 3867337 | Zbl 06946446
[13] Gil', M. I.: On matching distance between eigenvalues of unbounded operators. Constr. Math. Anal. 5 (2022), 46-53. DOI 10.33205/cma.1060718 | MR 4410203 | Zbl 1497.47009
[14] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). DOI 10.1090/mmono/018 | MR 0246142 | Zbl 0181.13503
[15] Gohberg, I. C., Krein, M. G.: Theory and Applications of Volterra Operators in a Hilbert Space. Translations of Mathematical Monographs 24. AMS, Providence (1970). DOI 10.1090/mmono/024 | MR 0264447 | Zbl 0194.43804
[16] Jeribi, A.: Perturbation Theory for Linear Operators: Denseness and Bases with Applications. Springer, Singapore (2021). DOI 10.1007/978-981-16-2528-2 | MR 4306622 | Zbl 1483.47001
[17] Kahan, W.: Spectra of nearly Hermitian matrices. Proc. Am. Math. Soc. 48 (1975), 11-17. DOI 10.1090/S0002-9939-1975-0369394-5 | MR 0369394 | Zbl 0322.15022
[18] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). DOI 10.1007/978-3-642-66282-9 | MR 0407617 | Zbl 0435.47001
[19] Kato, T.: Variation of discrete spectra. Commun. Math. Phys. 111 (1987), 501-504. DOI 10.1007/BF01238911 | MR 0900507 | Zbl 0632.47002
[20] Killip, R.: Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum. Int. Math. Res. Not. 2002 (2002), 2029-2061. DOI 10.1155/S1073792802204250 | MR 1925875 | Zbl 1021.34071
[21] Ma, R., Wang, H., Elsanosi, M.: Spectrum of a linear fourth-order differential operator and its applications. Math. Nachr. 286 (2013), 1805-1819. DOI 10.1002/mana.201200288 | MR 3145173 | Zbl 1298.34041
[22] Rojo, O.: Inequalities involving the mean and the standard deviation of nonnegative real numbers. J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. DOI 10.1155/JIA/2006/43465 | MR 2270311 | Zbl 1133.26321
[23] Sahari, M. L., Taha, A. K., Randriamihamison, L.: A note on the spectrum of diagonal perturbation of weighted shift operator. Matematiche 74 (2019), 35-47. DOI 10.4418/2019.74.1.3 | MR 3964778 | Zbl 1714.2751
Partner of
EuDML logo