Previous |  Up |  Next

Article

Title: Characterizing finite groups whose enhanced power graphs have universal vertices (English)
Author: Costanzo, David G.
Author: Lewis, Mark L.
Author: Schmidt, Stefano
Author: Tsegaye, Eyob
Author: Udell, Gabe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 637-645
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and construct a graph $\Delta (G)$ by taking $G\setminus \{1\}$ as the vertex set of $\Delta (G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle $ is cyclic. Let $K(G)$ be the set consisting of the universal vertices of $\Delta (G)$ along the identity element. For a solvable group $G$, we present a necessary and sufficient condition for $K(G)$ to be nontrivial. We also develop a connection between $\Delta (G)$ and $K(G)$ when $|G|$ is divisible by two distinct primes and the diameter of $\Delta (G)$ is 2. (English)
Keyword: enhanced power graph
Keyword: universal vertex
Keyword: diameter
MSC: 05C25
MSC: 20D25
DOI: 10.21136/CMJ.2024.0065-24
.
Date available: 2024-07-10T14:59:52Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152463
.
Reference: [1] Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F.: On the structure of the power graph and the enhanced power graph of a group.Electron. J. Comb. 24 (2017), Article ID P3.16, 18 pages \99999DOI99999 10.37236/6497 . Zbl 1369.05059, MR 3691533
Reference: [2] Abdollahi, A., Hassanabadi, A. Mohammadi: Noncyclic graph of a group.Commun. Algebra 35 (2007), 2057-2081. Zbl 1131.20016, MR 2331830, 10.1080/00927870701302081
Reference: [3] Bera, S., Bhuniya, A. K.: On enhanced power graphs of finite groups.J. Algebra Appl. 17 (2018), Article ID 1850146, 8 pages. Zbl 1392.05053, MR 3825307, 10.1142/S0219498818501463
Reference: [4] Bera, S., Dey, H. K.: On the proper enhanced power graphs of finite nilpotent groups.J. Group Theory 25 (2022), 1109-1131. Zbl 1510.20019, MR 4504122, 10.1515/jgth-2022-0057
Reference: [5] Bera, S., Dey, H. K., Mukherjee, S. K.: On the connectivity of enhanced power graphs of finite groups.Graphs Comb. 37 (2021), 591-603. Zbl 1492.05076, MR 4221643, 10.1007/s00373-020-02267-5
Reference: [6] Berkovich, Y.: Groups of Prime Power Order. Volume 1.de Gruyter Expositions in Mathematics 46. Walter De Gruyter, Berlin (2008). Zbl 1168.20001, MR 2464640, 10.1515/9783110208221
Reference: [7] Cameron, P. J.: Graphs defined on groups.Int. J. Group Theory 11 (2022), 53-107. Zbl 1496.05070, MR 4346241, 10.22108/IJGT.2021.127679.1681
Reference: [8] Costanzo, D. G., Lewis, M. L., Schmidt, S., Tsegaye, E., Udell, G.: The cyclic graph of a $Z$-group.Bull. Aust. Math. Soc. 104 (2021), 295-301. Zbl 07394396, MR 4308146, 10.1017/S0004972720001318
Reference: [9] Imperatore, D.: On a graph associated with a group.Ischia Group Theory 2008 World Scientific, Hackensack (2009), 100-115. Zbl 1191.20017, MR 2816425, 10.1142/9789814277808_0008
Reference: [10] Imperatore, D., Lewis, M. L.: A condition in finite solvable groups related to cyclic subgroups.Bull. Aust. Math. Soc. 83 (2011), 267-272. Zbl 1220.20015, MR 2784785, 10.1017/S0004972710001747
Reference: [11] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92. AMS, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092
Reference: [12] Ma, X., Kelarev, A., Lin, Y., Wang, K.: A survey on enhanced power graphs of finite groups.Electron. J. Graph Theory Appl. 10 (2022), 89-111. Zbl 1487.05119, MR 4446436, 10.5614/ejgta.2022.10.1.6
Reference: [13] Ma, X., She, Y.: The metric dimension of the enhanced power graph of a finite group.J. Algebra Appl. 19 (2020), Article ID 2050020, 14 pages. Zbl 1437.05098, MR 4065011, 10.1142/S0219498820500206
Reference: [14] Mahmoudifar, A., Babai, A.: On the structure of finite groups with dominatable enhanced power graph.J. Algebra Appl. 21 (2022), Article ID 2250176, 8 pages. Zbl 1496.05075, MR 4474716, 10.1142/S0219498822501766
Reference: [15] O'Bryant, K., Patrick, D., Smithline, L., Wepsic, E.: Some facts about cycels and tidy groups.Mathematical Sciences Technical Reports (MSTR) 131 (1992), 8 pages Available at \brokenlink {https://scholar.rose-hulman.edu/math_mstr/131}\kern0pt.
Reference: [16] Suzuki, M.: Group Theory. Volume 2.Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). Zbl 0586.20001, MR 0815926
Reference: [17] Puttkamer, T. W. von: On the Finiteness of the Classifying Space for Virtually Cyclic Subgroups: Dissertation.Rheinischen Friedrich-Wilhelms-Universität, Bonn (2018), Available at https://core.ac.uk/download/pdf/322960861.pdf\kern0pt. MR 3950648
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo