Previous |  Up |  Next

Article

Title: On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$ (English)
Author: Ben Yakkou, Hamid
Author: Didi, Jalal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 2
Year: 2024
Pages: 167-183
Summary lang: English
.
Category: math
.
Summary: Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples. (English)
Keyword: power integral basis
Keyword: theorem of Ore
Keyword: prime ideal factorization
Keyword: common index divisor
MSC: 11R04
MSC: 11R16
MSC: 11R21
DOI: 10.21136/MB.2023.0071-22
.
Date available: 2024-07-10T15:02:27Z
Last updated: 2024-07-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152466
.
Reference: [1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse.Int. J. Algebra Comput. 26 (2016), 577-583. Zbl 1404.11124, MR 3506350, 10.1142/S0218196716500259
Reference: [2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields.Int. J. Number Theory 10 (2014), 2257-2265. Zbl 1316.11094, MR 3273484, 10.1142/S1793042114500778
Reference: [3] Yakkou, H. Ben, Chillali, A., Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{2^r \cdot 5^s}-m$.Commun. Algebra 49 (2021), 2916-2926. Zbl 1471.11260, MR 4274858, 10.1080/00927872.2021.1883642
Reference: [4] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation.Acta Arith. 115 (2004), 85-96. Zbl 1064.11084, MR 2102808, 10.4064/aa115-1-7
Reference: [5] Cohen, H.: A Course in Computational Algebraic Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9
Reference: [6] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen.Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German.
Reference: [7] Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{3^r\cdot 7^s}-m$.Colloq. Math. 169 (2022), 307-317. Zbl 07558464, MR 4443656, 10.4064/cm8574-6-2021
Reference: [8] Fadil, L. El, Yakkou, H. Ben, Didi, J.: On power integral bases for certain pure number fields defined by $x^{42}- m$.Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. Zbl 1478.11124, MR 4322465, 10.1007/s40590-021-00388-2
Reference: [9] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields.J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. Zbl 1297.11134, MR 2959422, 10.1142/S0219498812500739
Reference: [10] Fadil, L. El, Najim, A.: On power integral bases for certain pure number fields defined by $x^{2^u \cdot 3^v}-m$.Available at https://arxiv.org/abs/2106.01252 (2021), 12 pages. MR 4361576
Reference: [11] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms.Birkhäuser, Cham (2019). Zbl 1465.11090, MR 3970246, 10.1007/978-3-030-23865-0
Reference: [12] Gaál, I., Győry, K.: Index form equations in quintic fields.Acta Arith. 89 (1999), 379-396. Zbl 0930.11091, MR 1703860, 10.4064/aa-89-4-379-396
Reference: [13] Gaál, I., Remete, L.: Binomial Thue equations and power integral bases in pure quartic fields.JP J. Algebra Number Theory Appl. 32 (2014), 49-61. Zbl 1295.11120
Reference: [14] Gaál, I., Remete, L.: Integral bases and monogenity of pure fields.J. Number Theory 173 (2017), 129-146. Zbl 1419.11118, MR 3581912, 10.1016/j.jnt.2016.09.009
Reference: [15] Gaál, I., Remete, L.: Non-monogenity in a family of octic fields.Rocky Mt. J. Math. 47 (2017), 817-824. Zbl 1381.11102, MR 3682150, 10.1216/RMJ-2017-47-3-817
Reference: [16] Gassert, T. A.: A note on the monogeneity of power maps.Albanian J. Math. 11 (2017), 3-12. Zbl 1392.11082, MR 3659215, 10.51286/albjm/1495919797
Reference: [17] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory.Trans. Am. Math. Soc. 364 (2012), 361-416. Zbl 1252.11091, MR 2833586, 10.1090/S0002-9947-2011-05442-5
Reference: [18] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. Zbl 1363.11094, MR 3443598
Reference: [19] Hasse, H.: Zahlentheorie.Akademie-Verlag, Berlin (1963), German. Zbl 1038.11500, MR 0153659
Reference: [20] Jakhar, A., Khanduja, S., Sangwan, N.: On the discriminant of pure number fields.Colloq. Math. 167 (2022), 149-157. Zbl 1491.11099, MR 4339462, 10.4064/cm8257-11-2020
Reference: [21] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers.Springer Monographs in Mathematics. Springer, Berlin (2004). Zbl 1159.11039, MR 2078267, 10.1007/978-3-662-07001-7
Reference: [22] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. MR 1512440, 10.1007/BF01459087
Reference: [23] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields.Acta. Arith. 153 (2012), 393-414. Zbl 1255.11052, MR 2925379, 10.4064/aa153-4-4
.

Files

Files Size Format View
MathBohem_149-2024-2_2.pdf 313.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo