Previous |  Up |  Next

Article

Title: The canonical constructions of connections on total spaces of fibred manifolds (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 3
Year: 2024
Pages: 163-175
Summary lang: English
.
Category: math
.
Summary: We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space. (English)
Keyword: general connection
Keyword: linear connection
Keyword: natural operator
MSC: 53C05
MSC: 58A32
DOI: 10.5817/AM2024-3-163
.
Date available: 2024-08-02T08:35:47Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152524
.
Reference: [1] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles.Research Notes in Math., vol. 121, Pitman, 1985, pp. 318–341. MR 0864879
Reference: [2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.Interscience Publishers New York London, 1963. Zbl 0119.37502, MR 1533559
Reference: [3] Kolář, I.: Induced connections on total spaces of fibred bundles.Int. J. Geom. Methods Mod. Phys. 4 (2010), 705–711. MR 2669064, 10.1142/S021988781000452X
Reference: [4] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [5] Mikulski, W.M.: The induced connections on total spaces of fibered manifolds.Publ. Math. (Beograd) 97 (111) (2015), 149–160. MR 3331243, 10.2298/PIM140712001M
.

Files

Files Size Format View
ArchMathRetro_060-2024-3_5.pdf 485.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo