Previous |  Up |  Next

Article

Keywords:
shear thinning fluids; regularity criterion
Summary:
J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\Bbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
References:
[1] Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q.: Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\Bbb R^3$. Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. DOI 10.1007/s40314-020-01281-w | MR 4132926 | Zbl 1463.35138
[2] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).
[3] Bae, H.-O., Choe, H. J., Kim, D. W.: Regularity and singularity of weak solutions to Ostwald-de Waele flows. J. Korean Math. Soc. 37 (2000), 957-975. MR 1803282 | Zbl 0977.76005
[4] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear-dependent viscosities. J. Math. Fluid Mech. 12 (2010), 101-132. DOI 10.1007/s00021-008-0277-y | MR 2602916 | Zbl 1261.35118
[5] Böhme, G.: Non-Newtonian Fluid Mechanics. North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). MR 0882542 | Zbl 0713.76004
[6] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations. J. Math. Fluid Mech. 16 (2014), 721-725. DOI 10.1007/s00021-014-0182-5 | MR 3267544 | Zbl 1307.35186
[7] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. DOI 10.2422/2036-2145.2010.1.01 | MR 2668872 | Zbl 1253.76017
[8] Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics 96. AMS, Providence (2008). DOI 10.1090/gsm/096 | MR 2435520 | Zbl 1147.35001
[9] Ladyzhenskaya, O. A.: New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. MR 0226907 | Zbl 0202.37802
[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). MR 0254401 | Zbl 0184.52603
[11] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[12] Loayza, M., Rojas-Medar, M. A.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. DOI 10.1063/1.4942047 | MR 3462971 | Zbl 1342.35223
[13] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). DOI 10.1007/978-1-4899-6824-1 | MR 1409366 | Zbl 0851.35002
[14] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. DOI 10.1016/S1874-5717(06)80008-3 | MR 2182831 | Zbl 1095.35027
[15] O'Neil, R.: Convolution operators and $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129-142. DOI 10.1215/S0012-7094-63-03015-1 | MR 0146673 | Zbl 0178.47701
[16] Pineau, B., Yu, X.: A new Prodi-Serrin type regularity criterion in velocity directions. J. Math. Fluid Mech. 20 (2018), 1737-1744. DOI 10.1007/s00021-018-0388-z | MR 3877494 | Zbl 1419.35153
[17] Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math., Praha 41 (1996), 169-201. DOI 10.21136/AM.1996.134320 | MR 1382464 | Zbl 0863.76003
[18] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). DOI 10.1007/978-3-0346-0416-1 | MR 0781540 | Zbl 0546.46027
[19] Yang, J.: Regularity criteria for 3D shear thinning fluids via two velocity components. Comput. Math. Appl. 77 (2019), 2854-2858. DOI 10.1016/j.camwa.2019.01.017 | MR 3945092 | Zbl 1442.76011
Partner of
EuDML logo