Previous |  Up |  Next

Article

Title: Role of the Harnack extension principle in the Kurzweil-Stieltjes integral (English)
Author: Hanung, Umi Mahnuna
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 337-363
Summary lang: English
.
Category: math
.
Summary: In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration. (English)
Keyword: Kurzweil-Stieltjes integral
Keyword: integral over arbitrary bounded sets
Keyword: equiintegrability
Keyword: equiregulatedness
Keyword: convergence theorem
Keyword: Harnack extension principle
MSC: 26A36
MSC: 26A39
MSC: 26A42
MSC: 28B05
MSC: 28C20
DOI: 10.21136/MB.2023.0162-22
.
Date available: 2024-09-11T13:46:26Z
Last updated: 2024-09-11
Stable URL: http://hdl.handle.net/10338.dmlcz/152538
.
Reference: [1] Arredondo, J. H., Bernal, M., Morales, M. G.: Fourier analysis with generalized integration.Mathematics 8 (2020), Article ID 1199, 16 pages. 10.3390/math8071199
Reference: [2] Bartle, R. G.: A convergence theorem for generalized Riemann integrals.Real Anal. Exch. 20 (1994/1995), 119-124. Zbl 0828.26006, MR 1313676, 10.2307/44152472
Reference: [3] Bartle, R. G.: A Modern Theory of Integration.Graduate Studies in Mathematics 32. AMS, Providence (2001). Zbl 0968.26001, MR 1817647, 10.1090/gsm/032
Reference: [4] Bongiorno, B., Piazza, L. Di: Convergence theorems for generalized Riemann-Stieltjes integrals.Real Anal. Exch. 17 (1991/1992), 339-361. Zbl 0758.26006, MR 1147373, 10.2307/44152212
Reference: [5] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications.John Wiley & Sons, Hoboken (2021). Zbl 1475.34001, MR 4485099, 10.1002/9781119655022
Reference: [6] Cao, S. S.: The Henstock integral for Banach-valued functions.Southeast Asian Bull. Math. 16 (1992), 35-40. Zbl 0749.28007, MR 1173605
Reference: [7] Caponetti, D., Cichoń, M., Marraffa, V.: On a step method and a propagation of discontinuity.Comput. Appl. Math. 38 (2019), Article ID 172, 20 pages. Zbl 1438.34219, MR 4017897, 10.1007/s40314-019-0927-0
Reference: [8] Carl, S., Heikkilä, S.: Fixed Point Theory in Ordered Sets and Applications: From Differential and Integral Equations to Game Theory.Springer, New York (2011). Zbl 1209.47001, MR 2760654, 10.1007/978-1-4419-7585-0
Reference: [9] Cousin, P.: Sur les fonctions de $n$ variables complexes.Acta Math. 19 (1895), 1-62 French \99999JFM99999 26.0456.02. MR 1554861, 10.1007/BF02402869
Reference: [10] Federson, M., Mawhin, J., Mesquita, C.: Existence of periodic solutions and bifurcation points for generalized ordinary differential equations.Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. Zbl 1471.34011, MR 4253257, 10.1016/j.bulsci.2021.102991
Reference: [11] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424, 10.21136/MB.1991.126195
Reference: [12] Gordon, R. A.: Another look at a convergence theorem for the Henstock integral.Real Anal. Exch. 15 (1989/1990), 724-728. Zbl 0708.26005, MR 1059433, 10.2307/44152048
Reference: [13] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [14] Hanung, U. M., Tvrdý, M.: On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil.Math. Bohem. 144 (2019), 357-372. Zbl 07217260, MR 4047342, 10.21136/MB.2019.0015-19
Reference: [15] Henstock, R.: Lectures on the Theory of Integration.Series in Real Analysis 1. World Scientific, Singapore (1988). Zbl 0668.28001, MR 0963249, 10.1142/0510
Reference: [16] Hildebrandt, T. H.: Introduction to the Theory of Integration.Pure and Applied Mathematics 13. Academic Press, New York (1963). Zbl 0112.28302, MR 0154957
Reference: [17] Hönig, C. S.: Volterra Stieltjes-Integral Equations: Functional Analytic Methods, Linear Constraints.North-Holland Mathematics Studies 16. Notas de Mathematica 56. North-Holland, Amsterdam (1975). Zbl 0307.45002, MR 0499969
Reference: [18] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling.Math. Bohem. 141 (2016), 261-286. Zbl 1389.34140, MR 3499787, 10.21136/MB.2016.18
Reference: [19] Kubota, Y.: The Cauchy property of the generalized approximately continuous Perron integral.Tohoku Math. J., II. Ser. 12 (1960), 171-174. Zbl 0109.28002, MR 121461, 10.2748/tmj/1178244433
Reference: [20] Kurtz, D. S., Swartz, C. W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane.Series in Real Analysis 13. World Scientific, Hackensack (2012). Zbl 1263.26019, MR 2894455, 10.1142/8291
Reference: [21] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [22] Kurzweil, J.: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. Zbl 0441.28001, MR 0597703
Reference: [23] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.Series in Real Analysis 7. World Scientific, Singapore (2000). Zbl 0954.28001, MR 1763305, 10.1142/4333
Reference: [24] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907
Reference: [25] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exch. 17 (1991/1992), 110-139. Zbl 0754.26003, MR 1147361, 10.2307/44152200
Reference: [26] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957, 10.1142/0845
Reference: [27] Lee, P. Y.: Harnack Extension for the Henstock integral in the Euclidean space.J. Math. Study 27 (1994), 5-8. Zbl 0927.26014, MR 1318250
Reference: [28] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces.Series in Real Analysis 12. World Scientific, Hackensack (2011). Zbl 1246.26002, MR 2789724, 10.1142/7933
Reference: [29] Liu, W., Krejčí, P., Ye, G.: Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions.Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 3783-3795. Zbl 1375.34073, MR 3693841, 10.3934/dcdsb.2017190
Reference: [30] Albés, I. Márquez, Slavík, A., Tvrdý, M.: Duality for Stieltjes differential and integral equations.J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. Zbl 07616180, MR 4499373, 10.1016/j.jmaa.2022.126789
Reference: [31] Monteiro, G. A.: On Kurzweil-Stieltjes equiintegrability and generalized BV functions.Math. Bohem. 144 (2019), 423-436. Zbl 1499.26024, MR 4047345, 10.21136/MB.2019.0041-19
Reference: [32] Monteiro, G. A., Hanung, U. M., Tvrdý, M.: Bounded convergence theorem for abstract Kurzweil-Stieltjes integral.Monatsh. Math. 180 (2016), 409-434. Zbl 1355.26008, MR 3513214, 10.1007/s00605-015-0774-z
Reference: [33] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [34] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space.Math. Bohem. 137 (2012), 365-381. Zbl 1274.26014, MR 3058269, 10.21136/MB.2012.142992
Reference: [35] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter.Discrete Contin. Dyn. Syst. 33 (2013), 283-303. Zbl 1268.45009, MR 2972960, 10.3934/dcds.2013.33.283
Reference: [36] Ng, W. L.: Nonabsolute Integration on Measure Spaces.Series in Real Analysis 14. World Scientific, Hackensack (2018). Zbl 1392.28001, MR 3752602, 10.1142/10489
Reference: [37] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory.Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). Zbl 0804.26005, MR 1268404
Reference: [38] Saks, S.: Theory of the Integral.Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). Zbl 0017.30004, MR 0167578
Reference: [39] Sánchez-Perales, S., Mendoza-Torres, F. J.: Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral.Czech. Math. J. 70 (2020), 519-537. Zbl 07217149, MR 4111857, 10.21136/CMJ.2019.0388-18
Reference: [40] Sánchez-Perales, S., Pérez-Becerra, T., Vázquez-Hipólito, V., Oliveros-Oliveros, J. J. O.: Sturm-Liouville differential equations involving Kurzweil-Henstock integrable functions.Mathematics 9 (2021), Article ID 1403, 20 pages. 10.3390/math9121403
Reference: [41] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [42] Schwabik, Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144, 10.21136/MB.1996.126036
Reference: [43] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433-457. Zbl 0937.34047, MR 1722877, 10.21136/MB.1999.125994
Reference: [44] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals.Math. Bohem. 126 (2001), 613-629. Zbl 0980.26005, MR 1970264, 10.21136/MB.2001.134198
Reference: [45] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia and D. Reidel, Praha and Dordrecht (1979). Zbl 0417.45001, MR 0542283
Reference: [46] Schwabik, Š., Vrkoč, I.: On Kurzweil-Henstock equiintegrable sequences.Math. Bohem. 121 (1996), 189-207. Zbl 0863.26009, MR 1400612, 10.21136/MB.1996.126102
Reference: [47] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.Series in Real Analysis 10. World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754, 10.1142/5905
Reference: [48] Slavík, A.: Explicit solutions of linear Stieltjes integral equations.Result. Math. 78 (2023), Article ID 40, 28 pages. Zbl 1507.45004, MR 4523289, 10.1007/s00025-022-01816-z
Reference: [49] Stieltjes, T. J.: Recherches sur les fractions continues.Ann. Fac. Sci. Toulouse, VI. Sér., Math. 4 (1995), J76--J122 French. Zbl 0861.01036, MR 1607517, 10.5802/afst.808
Reference: [50] Trench, W. F.: Introduction to Real Analysis.Prentice Hall, Upper Saddle River (2003). Zbl 1204.00023
Reference: [51] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral.Čas. Pěstování Mat. 114 (1989), 187-209. Zbl 0671.26006, MR 1063765, 10.21136/CPM.1989.108713
.

Files

Files Size Format View
MathBohem_149-2024-3_5.pdf 373.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo