Title: | Higher-dimensional Auslander-Reiten sequences (English) |
Author: | Li, Jiangsha |
Author: | He, Jing |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 3 |
Year: | 2024 |
Pages: | 771-786 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Zhou and Zhu have shown that if $\mathscr {C}$ is an $(n+2)$-angulated category and $\mathscr {X}$ is a cluster tilting subcategory of $\mathscr{C}$, then the quotient category $\mathscr {C}/\mathscr {X}$ is an $n$-abelian category. We show that if $\mathscr {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathscr {C}/\mathscr {X}$ has Auslander-Reiten $n$-exact sequences. (English) |
Keyword: | $(n+2)$-angulated category |
Keyword: | cluster tilting subcategory |
Keyword: | $n$-abelian category |
Keyword: | Auslander-Reiten $(n+2)$-angle |
Keyword: | Auslander-Reiten $n$-exact sequence |
MSC: | 16G70 |
MSC: | 18E10 |
MSC: | 18G80 |
DOI: | 10.21136/CMJ.2024.0545-23 |
. | |
Date available: | 2024-10-03T12:36:10Z |
Last updated: | 2024-10-04 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152580 |
. | |
Reference: | [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference: | [2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences.Commun. Algebra 3 (1975), 239-294. Zbl 0331.16027, MR 0379599, 10.1080/00927877508822046 |
Reference: | [3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences.Commun. Algebra 5 (1977), 443-518. Zbl 0396.16007, MR 0439881, 10.1080/00927877708822180 |
Reference: | [4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608 |
Reference: | [5] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning.J. Pure Appl. Algebra 223 (2019), 3554-3580. Zbl 1411.16017, MR 3926227, 10.1016/j.jpaa.2018.11.017 |
Reference: | [6] Fedele, F.: $d$-Auslander-Reiten sequences in subcategories.Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 342-373. Zbl 1468.16028, MR 4089379, 10.1017/S0013091519000312 |
Reference: | [7] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448, 10.1515/CRELLE.2011.177 |
Reference: | [8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras.London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124, 10.1017/CBO9780511629228 |
Reference: | [9] He, J., Zhang, J. Hu. D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories.Ark. Mat. 60 (2022), 365-385. Zbl 1509.18006, MR 4500371, 10.4310/ARKIV.2022.v60.n2.a8 |
Reference: | [10] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting.Trans. Am. Math. Soc. 363 (2011), 6575-6614. Zbl 1264.16015, MR 2833569, 10.1090/S0002-9947-2011-05312-2 |
Reference: | [11] Iyama, O., Yoshino, Y.: Mutations in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4 |
Reference: | [12] Jasso, G.: $n$-abelian and $n$-exact categories.Math. Z. 283 (2016), 703-759. Zbl 1356.18005, MR 3519980, 10.1007/s00209-016-1619-8 |
Reference: | [13] Jiao, P.: The generalized Auslander-Reiten duality on an exact category.J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. Zbl 1407.16014, MR 3895199, 10.1142/S0219498818502274 |
Reference: | [14] rgensen, P. Jø: Auslander-Reiten theory over topological spaces.Comment. Math. Helv. 79 (2004), 160-182. Zbl 1053.55010, MR 2031704, 10.1007/S00014-001-0795-4 |
Reference: | [15] rgensen, P. Jø: Auslander-Reiten triangles in subcategories.J. $K$-Theory 3 (2009), 583-601. Zbl 1201.16021, MR 2507732, 10.1017/is008007021jkt056 |
Reference: | [16] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs.Czech. Math. J. 65 (2015), 953-968. Zbl 1363.18009, MR 3441328, 10.1007/s10587-015-0220-3 |
Reference: | [17] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories.Commun. Algebra 45 (2017), 828-840. Zbl 1371.18010, MR 3562541, 10.1080/00927872.2016.1175591 |
Reference: | [18] Liu, S., Niu, H.: Almost split sequences in tri-exact categories.J. Pure Appl. Algebra 226 (2022), Article ID 107092, 31 pages. Zbl 1511.16004, MR 4403638, 10.1016/j.jpaa.2022.107092 |
Reference: | [19] Oppermann, S., Thomas, H.: Higher-dimensional cluster combinatorics and representation theory.J. Eur. Math. Soc. (JEMS) 14 (2012), 1679-1737. Zbl 1254.05197, MR 2984586, 10.4171/JEMS/345 |
Reference: | [20] Shah, A.: Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories.J. Pure Appl. Algebra 224 (2020), 98-124. Zbl 1423.18033, MR 3986413, 10.1016/j.jpaa.2019.04.017 |
Reference: | [21] Zhou, P.: On the existence of Auslander-Reiten $(d+2)$-angles in $(d+2)$-angulated categories.Taiwanese. J. Math. 25 (2021), 233-249. Zbl 1482.18008, MR 4255209, 10.11650/tjm/201102 |
Reference: | [22] Zhou, P.: Higher-dimensional Auslander-Reiten theory on $(d+2)$-angulated categories.Glasg. Math. J. 64 (2022), 527-547. Zbl 1494.18010, MR 4462377, 10.1017/S0017089521000343 |
Reference: | [23] Zhou, P., Zhu, B.: $n$-abelian quotient categories.J. Algebra 527 (2019), 264-279. Zbl 1470.18020, MR 3924434, 10.1016/j.jalgebra.2019.03.007 |
. |
Fulltext not available (moving wall 24 months)