Title: | A remark on a Diophantine equation of S. S. Pillai (English) |
Author: | Hoque, Azizul |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 3 |
Year: | 2024 |
Pages: | 897-903 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$. (English) |
Keyword: | Pillai's Diophantine equation |
Keyword: | Lehmer sequence |
Keyword: | primitive divisor |
MSC: | 11D61 |
MSC: | 11D72 |
DOI: | 10.21136/CMJ.2024.0124-24 |
. | |
Date available: | 2024-10-03T12:39:49Z |
Last updated: | 2024-10-04 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152587 |
. | |
Reference: | [1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers.J. Reine Angew. Math. 539 (2001), 75-122. Zbl 0995.11010, MR 1863855, 10.1515/crll.2001.080 |
Reference: | [2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125 |
Reference: | [3] Cohen, H.: A Course in Computational Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9 |
Reference: | [4] Cohn, J. H. E.: Square Fibonacci numbers, etc.Fibonacci Q. 2 (1964), 109-113. Zbl 0126.07201, MR 0161819 |
Reference: | [5] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equations.Period. Math. Hung. 88 (2024), 418-428. Zbl 7880178, MR 4751334, 10.1007/s10998-023-00564-z |
Reference: | [6] Hua, L. K.: Introduction to Number Theory.Springer, Berlin (1982). Zbl 0483.10001, MR 665428, 10.1007/978-3-642-68130-1 |
Reference: | [7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$.Rocky Mt. J. Math. 37 (2007), 1181-1185. Zbl 1146.11019, MR 2360292, 10.1216/rmjm/1187453105 |
Reference: | [8] Luca, F., Mignotte, M.: On the equation $y^x \pm x^y = z^2$.Rocky Mt. J. Math. 30 (2000), 651-661. Zbl 1014.11024, MR 1787004, 10.1216/rmjm/1022009287 |
Reference: | [9] Pillai, S. S.: On the indeterminate equation $x^y-y^x = a$.Annamalai Univ. J. 1 (1932), 59-61. Zbl 0005.05302 |
Reference: | [10] Robbins, N.: Fibonacci numbers of the form $cx^2$, where $1 \leq c \leq 1000$.Fibonacci Q. 28 (1990), 306-315. Zbl 0728.11013, MR 1077496 |
Reference: | [11] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences.Math. Comput. 64 (1995), 869-888. Zbl 0832.11009, MR 1284673, 10.1090/S0025-5718-1995-1284673-6 |
Reference: | [12] Waldschmidt, M.: Perfect powers: Pillai's works and their developments.Collected works of S. Sivasankaranarayana Pillai. Volume 1 Ramanujan Mathematical Society, Mysore (2010), xxii--xlvii. MR 2766491 |
Reference: | [13] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$.Indag. Math., New Ser. 16 (2005), 301-320. Zbl 1088.11024, MR 2319301, 10.1016/S0019-3577(05)80030-8 |
. |
Fulltext not available (moving wall 24 months)