Previous |  Up |  Next

Article

Title: A remark on a Diophantine equation of S. S. Pillai (English)
Author: Hoque, Azizul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 897-903
Summary lang: English
.
Category: math
.
Summary: S. S. Pillai proved that for a fixed positive integer $a$, the exponential Diophantine equation $x^y-y^x= a$, $\min (x,y)>1$, has only finitely many solutions in integers $x$ and $y$. We prove that when $a$ is of the form $2z^2$, the above equation has no solution in integers $x$ and $y$ with $\gcd (x,y)=1$. (English)
Keyword: Pillai's Diophantine equation
Keyword: Lehmer sequence
Keyword: primitive divisor
MSC: 11D61
MSC: 11D72
DOI: 10.21136/CMJ.2024.0124-24
.
Date available: 2024-10-03T12:39:49Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152587
.
Reference: [1] Bilu, Y., Hanrot, G., Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers.J. Reine Angew. Math. 539 (2001), 75-122. Zbl 0995.11010, MR 1863855, 10.1515/crll.2001.080
Reference: [2] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [3] Cohen, H.: A Course in Computational Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9
Reference: [4] Cohn, J. H. E.: Square Fibonacci numbers, etc.Fibonacci Q. 2 (1964), 109-113. Zbl 0126.07201, MR 0161819
Reference: [5] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equations.Period. Math. Hung. 88 (2024), 418-428. Zbl 7880178, MR 4751334, 10.1007/s10998-023-00564-z
Reference: [6] Hua, L. K.: Introduction to Number Theory.Springer, Berlin (1982). Zbl 0483.10001, MR 665428, 10.1007/978-3-642-68130-1
Reference: [7] Le, M.: On the Diophantine equation $y^x-x^y=z^2$.Rocky Mt. J. Math. 37 (2007), 1181-1185. Zbl 1146.11019, MR 2360292, 10.1216/rmjm/1187453105
Reference: [8] Luca, F., Mignotte, M.: On the equation $y^x \pm x^y = z^2$.Rocky Mt. J. Math. 30 (2000), 651-661. Zbl 1014.11024, MR 1787004, 10.1216/rmjm/1022009287
Reference: [9] Pillai, S. S.: On the indeterminate equation $x^y-y^x = a$.Annamalai Univ. J. 1 (1932), 59-61. Zbl 0005.05302
Reference: [10] Robbins, N.: Fibonacci numbers of the form $cx^2$, where $1 \leq c \leq 1000$.Fibonacci Q. 28 (1990), 306-315. Zbl 0728.11013, MR 1077496
Reference: [11] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences.Math. Comput. 64 (1995), 869-888. Zbl 0832.11009, MR 1284673, 10.1090/S0025-5718-1995-1284673-6
Reference: [12] Waldschmidt, M.: Perfect powers: Pillai's works and their developments.Collected works of S. Sivasankaranarayana Pillai. Volume 1 Ramanujan Mathematical Society, Mysore (2010), xxii--xlvii. MR 2766491
Reference: [13] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$.Indag. Math., New Ser. 16 (2005), 301-320. Zbl 1088.11024, MR 2319301, 10.1016/S0019-3577(05)80030-8
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo