[1] Amman, H. M., Kendrick, D. A.:
Computing the 58 (1998), 2, 185-191.
DOI
[2] Betts, J. T.:
Survey of numerical methods for trajectory optimization. J. Guidance Control Dynamics (1998), 98124-2207.
Zbl 1158.49303
[3] Bock, H. G., Plitt, K. J.:
A multiple shooting algorithm for direct solution of optimal control problems. In: IFAC 9th congress 1984, pp. 1603-1608.
DOI
[4] Cortes, C., Vapnik, V.:
Support-vector networks. Mach. Learn 20 (1995), 3, 273-297.
DOI
[6] Kafash, B., Delavarkhalafi, A., Karbassi, S. M.:
Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems. Scientia Iranica 19 (2012), 3, 795-805.
DOI
[7] Kang, S., Wang, J., Li, C., Shan, J.:
Nonlinear optimal control with disturbance rejection for asteroid landing. J. Franklin Inst. 355 (2018), 16, 8027-8048.
DOI |
MR 3864034
[8] Kirk, D. E.: Optimal Control Theory. Prentice-Hall, Englewood Cliffs 1970.
[9] Latifi, S., Parand, K., Delkhosh, M.: Generalized Lagrange-Jacobi-Gauss-Radau collocation method for solving a nonlinear optimal control problem with the classical diffusion equation. European Phys. J. Plus, 2020.
[10] Loxton, R. C., Teo, K. L., Rehbock, V., Ling, W. K.:
Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica J. IFAC 45 (2009), 4, 973-980.
DOI |
MR 2535357
[11] Marzban, H. R., Razzaghi, M.:
Optimal control of linear systems via hybrid of block-pulse functions and Legendre polynomials. J. Franklin Inst. 341 (2004), 279-293.
DOI |
MR 2054477
[12] Mohammadi, K. M., Jani, M., Parand, K.: A least squares support vector regression for anisotropic diffusion filtering. arXiv preprint arXiv, 2022.
[13] Naevdal, E.:
Solving continuous-time optimal-control problems with a spreadsheet. J. Econom. Educ. 34 (2003), 2, 99-122.
DOI
[14] Naraigh, L. O., Byrne, A.:
Piecewise-constant optimal control strategies for controlling the outbreak of COVID-19 in the Irish population. Math. Biosci 330 (2020), 108496.
DOI |
MR 4167193
[15] Parand, K., Latifi, S., Delkhosh, M., Moayeri, M. M.: Generalized Lagrangian Jacobi-Gauss-Radau collocation method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation. arXiv preprint arXiv, 2018.
[16] Parand, K., Razzaghi, M., Sahleh, R., Jani, M.: Least squares support vector regression for solving Volterra integral equations.
[17] Pakniyat, A., Parand, K., Jani, M.:
Least squares support vector regression for differential equations on unbounded domains. Chaos Solitons Fractals, 2021.
MR 4299700
[18] Pontryagin, L. S., Boltyanskii, V., Gamkrelidze, R., Mischenko, E.:
The Mathematical Theory of Optimal Processes. Wiley Interscience, 1962.
MR 0166037
[19] Rabiei, K., Parand, K.:
Collocation method to solve inequality-constrained optimal control problems of arbitrary order. Engrg. Comput. 36 (2020), 1, 115-125.
DOI 10.1007/s00366-018-0688-1
[20] Razzaghi, M., Nazarzadeh, J., Nikravesh, K. Y.:
A collocation method for optimal control of linear systems with inequality constraints. Math.Problems Engrg. 3 (1998), 6, 503-515.
DOI 10.1155/S1024123X97000653
[21] Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci. 190 (2003), 131-154.
[22] Schwartz, A.:
Theory and Implementation of Numerical Mathod Based on Runge-Kutta Integration for Solving Optimal Control Problems. Ph.D. Thesis, University of California, 1996.
MR 1395832
[23] Shen, J., Tang, T., Wang, L-L.:
Spectral Methods: Algorithms, Analysis and Applications. Springer Science and Business Media, 2011.
MR 2867779
[24] Suykens, J. A., Vandewalle, J.:
Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999), 3, 293-300.
DOI
[25] Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De, Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, 2002.
[26] Teo, K. L., Goh, C. J., Wong, K. H.:
Unified Computational Approach to Optimal Control Problems. Longmann Scientific and Technical, 1991.
MR 1153024
[27] Sabermahani, S., Ordokhani, Y., Rabiei, K., Razzaghi, M.:
Solution of optimal control problems governed by Volterra integral and fractional integro-differential equations. J. Vibration Control 29 (2023), 15.-16, 3796-3808.
DOI |
MR 4617773
[28] Rabiei, K., Razzaghi, M.:
An approach to solve fractional optimal control problems via fractional-order Boubaker wavelets. J. Vibration Control 29 (2023), 7-8, 1806-1819.
DOI |
MR 4560887
[29] Heydari, M. H., Razzaghi, M., Avazzadeh, Z.:
Orthonormal piecewise Bernoulli functions: Application for optimal control problems generated. Vibration Control 29 (2023), 5-6, 1164-1175.
DOI |
MR 4548331
[30] Heydari, M. H., Tavakoli, R., Razzagh, M.:
Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative. Int. J. Systems Sci. 53 (2022), 12, 2694-2708.
DOI |
MR 4496198
[31] Ghanbari, G., Razzaghi, M.:
Numerical solutions for fractional optimal control problems by using generalised fractional-order Chebyshev wavelets. Int. J. Systems Sci. 53 (2022), 4, 778-792.
DOI |
MR 4385669
[32] Heydari, M. H., Razzaghi, M.:
A new class of orthonormal basis functions: application for fractional optimal control problems. Int. J. Systems Sci. 53 (2022), 2, 240-252.
DOI 10.1080/00207721.2021.1947411 |
MR 4369004
[33] Lakestani, M., Edrisi-Tabrizi, Y., Razzaghi, M.:
Study of B-spline collocation method for solving fractional optimal control problems. Trans. Inst. Measurement Control 43 (2021), 11, 2425-2437.
DOI
[34] Dehestani, H., Ordokhani, Y., Razzaghi, M.:
Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error. Int. J. Systems Sci. 51 (2020), 6, 1032-1052.
DOI |
MR 4095675
[35] Mashayekhi, S., Razzaghi, M.:
An approximate method for solving fractional optimal control problems by hybrid functions. J. Vibration Control 24 (2018), 9, 1621-1631.
DOI 10.1177/1077546316665956 |
MR 3785609
[36] Mohammed, J. K., Khudair, A. R.:
A novel numerical method for solving optimal control problems using fourth-degree hat functions. J. Partial Differential Equations Appl. Math. 7 (2023), 9, 100507.
DOI
[37] Hassani, H., Machado, J. A. Tenreiro, Avazzadeh, Z., Naraghirad, E., Dahaghin, M. Sh.:
Generalized Bernoulli polynomials: Solving nonlinear 2D fractional optimal control problems. J. Scient. Comput. 83 (2020), 2, 1-21.
DOI 10.1007/s10915-020-01213-0 |
MR 4091557
[38] Suykens, J. A. K., Vandewalle, J., Moor, B. D.: Optimal control by least squares support vector machines. J. Partial Differential Equations Appl. Math. 14 (2001), 1, 23-35.