Previous |  Up |  Next

Article

Title: Cartan geometry, supergravity and group manifold approach (English)
Author: François, Jordan
Author: Ravera, Lucrezia
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 4
Year: 2024
Pages: 243-281
Summary lang: English
.
Category: math
.
Summary: We make a case for the unique relevance of Cartan geometry for gauge theories of gravity and supergravity. We introduce our discussion by recapitulating historical threads, providing motivations. In a first part we review the geometry of classical gauge theory, as a background for understanding gauge theories of gravity in terms of Cartan geometry. The second part introduces the basics of the group manifold approach to supergravity, hinting at the deep rooted connections to Cartan supergeometry. The contribution is intended, not as an extensive review, but as a conceptual overview, and hopefully a bridge between communities in physics and mathematics. (English)
Keyword: Cartan geometry
Keyword: group manifold
Keyword: classical gauge field theory of gravity
Keyword: Cartan supergeometry
Keyword: supergroup manifold
Keyword: supergravity
MSC: 53Z05
MSC: 58A32
MSC: 58A50
MSC: 83-01
MSC: 83-03
MSC: 83E50
DOI: 10.5817/AM2024-4-243
.
Date available: 2024-11-27T08:45:45Z
Last updated: 2024-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/152643
.
Reference: [1] Abbott, L.F., Deser, S.: Charge definition in non-Abelian gauge theories.Phys. Lett. B 114 (4) (1982), 259–263. MR 0675235, 10.1016/0370-2693(82)90338-0
Reference: [2] Alekseevsky, D.V., Michor, P.W.: Differential geometry of Cartan connections.Publ. Math. Debrecen 47 (3–4) (1995), 349–375. MR 1362298, 10.5486/PMD.1995.1616
Reference: [3] Alfonsi, L.: The puzzle of global double field theory: Open problems and the case for a higher Kaluza-Klein perspective.Fortsch. Phys. 69 (7) (2021), 2000102. MR 4282510, 10.1002/prop.202000102
Reference: [4] Andrianopoli, L., D’Auria, R.: N=1 and N=2 pure supergravities on a manifold with boundary.JHEP 08 (2014), 012. 10.1007/JHEP08(2014)012
Reference: [5] Andrianopoli, L., D’Auria, R., Ravera, L.: Hidden Gauge structure of supersymmetric free differential algebras.JHEP 08 (2016), 095. MR 3555659, 10.1007/JHEP08(2016)095
Reference: [6] Andrianopoli, L., D’Auria, R., Ravera, L.: More on the hidden symmetries of 11D supergravity.Phys. Lett. B 772 (2017), 578–585. 10.1016/j.physletb.2017.07.016
Reference: [7] Andrianopoli, L., Ravera, L.: On the geometric approach to the boundary problem in supergravity.Universe 7 (12) (2021), 463. 10.3390/universe7120463
Reference: [8] Attard, J., François, J.: Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach II. Twistors.Classical Quantum Gravity 34 (8) (2017), 28 pp. MR 3633535
Reference: [9] Attard, J., François, J.: Tractors and twistors from conformal Cartan geometry: a Gauge theoretic approach I. Tractors.Adv. Theor. Math. Phys. 22 (8) (2018), 1831–1883. MR 3984517, 10.4310/ATMP.2018.v22.n8.a1
Reference: [10] Attard, J., François, J., Lazzarini, S.: Weyl gravity and Cartan geometry.Phys. Rev. D 93 (2016), 085032. MR 3550958, 10.1103/PhysRevD.93.085032
Reference: [11] Attard, J., François, J., Lazzarini, S., Masson, T.: Cartan connections and Atiyah Lie algebroids.J. Geom. Phys. 148 (2020), 103541. MR 4034711, 10.1016/j.geomphys.2019.103541
Reference: [12] Baez, J.C., Huerta, J.: An invitation to higher Gauge theory.Gen. Relativity Gravitation 43 (9) (2011), 2335–2392. MR 2825807, 10.1007/s10714-010-1070-9
Reference: [13] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. Zbl 0828.53012, MR 1322223, 10.1216/rmjm/1181072333
Reference: [14] Becchi, C., Rouet, A., Stora, R.: Renormalization of the Abelian Higgs-Kibble Model.Comm. Math. Phys. 42 (1975), 127–162. MR 0389060, 10.1007/BF01614158
Reference: [15] Becchi, C., Rouet, A., Stora, R.: Renormalization of Gauge theories.Ann. Physics 98 (1976), 287–321. MR 0413861, 10.1016/0003-4916(76)90156-1
Reference: [16] Berezin, F.A.: The method of second quantization.Pure Appl. Phys., New York, Academic Press, 1966. MR 0208930
Reference: [17] Berezin, F.A.: Introduction to Superanalysis.Mathematical Physics and Applied Mathematics, Springer, 1st ed., 1987. MR 0914369
Reference: [18] Berezin, F.A., Kac, G.I.: Lie groups with commuting and anticommuting parameters.Sb. Math. 11 (3) (1970), 311–325. MR 0265520, 10.1070/SM1970v011n03ABEH001137
Reference: [19] Berezin, F.A., Marinov, M.S.: Particle spin dynamics as the grassmann variant of classical mechanics.Ann. Physics 104 (2) (1977), 336–362. 10.1016/0003-4916(77)90335-9
Reference: [20] Berghofer, P., François, J., Friederich, S., Gomes, H., Hetzroni, G., Maas, A., Sondenheimer, R.: Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches.Elements in the Foundations of Contemporary Physics, Cambridge University Press, 2023.
Reference: [21] Bertlmann, R.A.: Anomalies In Quantum Field Theory.International Series of Monographs on Physics, vol. 91, Oxford University Press, 1996., 1996. MR 1373240
Reference: [22] Blagojević, M., Hehl, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation.Imperial College Press, 2013.
Reference: [23] Blagojević, M., Hehland, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation.Imperial College Press, 2013.
Reference: [24] Bonor, L.: Fermions and Anomalies in Quantum Field Theories.Theoretical and Mathematical Physics, Springer Cham, 1st ed., 2023. MR 4590535
Reference: [25] Bonora, L., Cotta-Ramusino, P.: Some remark on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations.Comm. Math. Phys. 87 (1983), 589–603. MR 0691046, 10.1007/BF01208267
Reference: [26] Burdet, G., Duval, C., Perrin, M.: Cartan structures on galilean manifolds: The chronoprojective geometry.J. Math. Phys. 24 (7) (1983), 1752–1760. MR 0709508, 10.1063/1.525927
Reference: [27] Burdet, G., Duval, C., Perrin, M.: Chronoprojective Cartan Structures on four-dimensional manifolds.RIMS, Kyoto Univ. 19 (1983), 813–840. MR 0716977, 10.2977/prims/1195182453
Reference: [28] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Mathematical Surveys and Monographs, vol. 1, American Mathematical Society, 2009. Zbl 1183.53002, MR 2532439, 10.1090/surv/154
Reference: [29] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures. I. Invariant differentiation.Acta Math. Univ. Comenian. 66 (1997), 33–69. MR 1474550
Reference: [30] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures. II. Normal Cartan connections.Acta Math. Univ. Comenian. 66 (1997), 203–220. MR 1620484
Reference: [31] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures,.III. Standard operators.Di erential Geom. Appl. 12 (1) (2000), 51–84. MR 1757020, 10.1016/S0926-2245(00)00003-6
Reference: [32] Cartan, É.: Les espaces à connexion conforme.Ann. Polon. Math. 2 (1923), 171–221.
Reference: [33] Cartan, É.: Les récentes généralisations de la notion d’espace.Bull. Sci. Math. 48 (1924), 825–861.
Reference: [34] Cartan, É.: Sur les variétés à connexion projective.Bull. Soc. Math. France 52 (1924), 205–241. MR 1504846, 10.24033/bsmf.1053
Reference: [35] Castellani, L.: A geometric interpretation of BRST symmetry.Classical Quantum Gravity 7 (1990), L159–164. MR 1064172, 10.1088/0264-9381/7/8/001
Reference: [36] Castellani, L., Catenacci, R., Grassi, P.A.: Supergravity actions with integral forms.Nuclear Phys. B 889 (2014), 419–442. MR 3280375, 10.1016/j.nuclphysb.2014.10.023
Reference: [37] Castellani, L., Catenacci, R., Grassi, P.A.: The geometry of supermanifolds and new supersymmetric actions.Nuclear Phys. B 899 (2015), 112–148. MR 3398909
Reference: [38] : Tullio Regge: An Eclectic Genius: From Quantum Gravity to Computer Play.vol. 9, World Scientific, 2019.
Reference: [39] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective.vol. 1–3, Singapore: World Scientific, 1991. MR 1120023
Reference: [40] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity.World Scientific Pub. Co. Inc., 1991. MR 1120023
Reference: [41] Castellani, L., Grassi, P.A.: Hodge duality and supergravity.Phys. Rev. D 108 (4) (2023), 046018. MR 4646295, 10.1103/PhysRevD.108.046018
Reference: [42] Catenacci, R., Debernardi, M., Grassi, P.A., Matessi, D.: Cech and de Rham cohomology of integral forms.J. Geom. Phys. 62 (2012), 890–902. MR 2888990, 10.1016/j.geomphys.2011.12.011
Reference: [43] Catenacci, R., Pirola, G.P.: A geometrical description of local and global anomalies.Lett. Math. Phys. 19 (1990), 45–51. MR 1040409, 10.1007/BF00402259
Reference: [44] Catenacci, R., Pirola, G.P., Martellini, M., Reina, C.: Group actions and anomalies in gauge theories.Phys. Lett. B 172 (1986), 223–226, https://doi.org/10.1016/0370-2693(86)90839-7. MR 0844737, 10.1016/0370-2693(86)90839-7
Reference: [45] Chamseddine, A.H., West, P.C.: Supergravity as a Gauge theory of supersymmetry.Nuclear Phys. 129 (1977), 39–44. 10.1016/0550-3213(77)90018-9
Reference: [46] Choquet-Bruhat, Y.: General Relativity and the Einstein Equations.Oxford Mathematical Monographs, Oxford University Press, 2009. MR 2473363
Reference: [47] Coleman, S., Mandula, J.: All possible symmetries of the S matrix.Phys. Rev. 159 (1967), 1251–1256. 10.1103/PhysRev.159.1251
Reference: [48] Concha, P., Ravera, L., Rodríguez, E.: On the supersymmetry invariance of flat supergravity with boundary.JHEP 01 (2018), 192. MR 3919303
Reference: [49] Connes, A.: Noncommutative Geometry Year 2000.Birkhäuser Basel, 2000, 481–559. MR 1826266
Reference: [50] Connes, A., Marcolli, M.: An Invitation to Noncommutative Geometry.ch. A walk in the non-commutative garden, pp. 1–128, World Scientific Publishing Company, 2008. MR 2408150
Reference: [51] Cotta Ramusino, P., Reina, C.: The action of the group of bundle-automorphisms on the space of connections and the geometry of gauge theories.J. Geom. Phys. 1 (3) (1984), 121–155. MR 0828400, 10.1016/0393-0440(84)90022-6
Reference: [52] Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions.Phys. Lett. B 76 (4) (1978), 409–412. MR 0550003, 10.1016/0370-2693(78)90894-8
Reference: [53] Cremonini, C.A.: The geometry of picture changing operators.accepted for publication in Adv. Theor. Math. Phys.; arXiv:2305.02828 [math-ph]. MR 4806830
Reference: [54] Cremonini, C.A., Grassi, P.A.: Generalised cocycles and super p-branes.6 2022. MR 4761204
Reference: [55] Cremonini, C.A., Grassi, P.A.: Pictures from super Chern-Simons theory.JHEP 03 (2020), 043. MR 4090094, 10.1007/JHEP03(2020)043
Reference: [56] Cremonini, C.A., Grassi, P.A.: Super Chern-Simons theory: Batalin-Vilkovisky formalism and $A_\infty $ algebras.Phys. Rev. D 102 (2) (2020), 025009. MR 4134650, 10.1103/PhysRevD.102.025009
Reference: [57] Cremonini, C.A., Grassi, P.A., Noris, R., Ravera, L.: Supergravities and branes from Hilbert-Poincaré series.JHEP 12 (2023), 088. MR 4685988, 10.1007/JHEP12(2023)088
Reference: [58] D’Auria, R.: Geometric supergravity.5 2020.
Reference: [59] D’Auria, R., Fré, P.: Cartan integrable systems, that is differential free algebras, in supergravity.September School on Supergravity and Supersymmetry, vol. 9, 1982. MR 0728778
Reference: [60] D’Auria, R., Fré, P.: Geometric supergravity in d = 11 and its hidden supergroup.Nuclear Phys. B 201 (1982), 101–140, [Erratum: Nucl.Phys.B 206, 496 (1982)]. MR 0667482
Reference: [61] D’Auria, R., Ravera, L.: Conformal gravity with totally antisymmetric torsion.Phys. Rev. D 104 (8) (2021), 084034. MR 4341563, 10.1103/PhysRevD.104.084034
Reference: [62] : Quantum fields and strings: A course for mathematicians. Vol. 1, 2.Providence, RI: AMS, American Mathematical Society, 1999.
Reference: [63] DeWitt, B.: Supermanifolds.Cambridge University Press, 1984. Zbl 0551.53002, MR 0778559
Reference: [64] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry and new models of Gauge theory.J. Math. Phys. 31 (2) (1990), 323–330. MR 1034168, 10.1063/1.528917
Reference: [65] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras.J. Math. Phys. 31 (2) (1990), 316–322. Zbl 0704.53081, MR 1034167, 10.1063/1.528916
Reference: [66] Eastwood, M., Bailey, T.: Complex paraconformal manifolds – their differential geometry and twistor theory.Forum Math. 3 (1) (1991), 61–103. MR 1085595
Reference: [67] Eder, K.: Super Cartan geometry and the super Ashtekar connection.Ann. Henri Poincaré 24 (2023), 3531–3599. MR 4642269, 10.1007/s00023-023-01290-5
Reference: [68] Eder, K., Huerta, J., Noja, S.: Poincaré Duality for Supermanifolds, Higher Cartan Structures and Geometric Supergravity.12 2023.
Reference: [69] Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity.J. Geom. Phys. 62 (1) (2012), 53–60. MR 2854194, 10.1016/j.geomphys.2011.09.008
Reference: [70] Eguchi, T., Gilkey, P., Hanson, A.: Gravitation, gauge theories and differential geometry.Phys. Rep. 66 (6) (1980), 213–393. MR 0598586, 10.1016/0370-1573(80)90130-1
Reference: [71] Ehresmann, C.: Sur la théorie des espaces fibrés.Colloque de topologie algébrique du CNRS, Paris, 1947, pp. 3–15. MR 0035021
Reference: [72] Ehresmann, C., Collectif, : Les connexions infinitésimales dans un espace fibré différentiable.Séminaire Bourbaki : années 1948/49 – 1949/50 – 1950/51, exposés 1–49, no. 1, Société mathématique de France, 1952, pp. 153–168. MR 0042768
Reference: [73] Faddeev, L.D., Popov, V.N.: Feynman diagrams for the Yang-Mills field.Phys. Lett. B 25 (1) (1967), 29–30. 10.1016/0370-2693(67)90067-6
Reference: [74] Ferrara, S., Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Gauging the graded conformal group with unitary internal symmetries.Nuclear Pkhys. B129 (1977), 125.
Reference: [75] Fine, D., Fine, A.: Gauge theory, anomalies and global geometry: The interplay of physics and mathematics.Stud. Hist. Philos. Modern Phys. 28 (1997), 307–323. MR 1604088, 10.1016/S1355-2198(97)00011-7
Reference: [76] Fiorenza, D., Sati, H., Schreiber, U.: Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields.Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. MR 3305054, 10.1142/S0219887815500188
Reference: [77] Fiorenza, D., Sati, H., Schreiber, U.: The Rational higher structure of M-theory.Fortsch. Phys. 67 (8–9) (2019*), 1910017. MR 4016023, 10.1002/prop.201910017
Reference: [78] Fiorenza, D., Sati, H., Schreiber, U.: Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5.JHEP 02 (2020), 107. MR 4089174, 10.1007/JHEP02(2020)107
Reference: [79] François André, J.: The dressing field method for diffeomorphisms: a relational framework.2023. MR 4771773
Reference: [80] François, J.: Artificial versus substantial Gauge symmetries: A criterion and an application to the electroweak model.Philos. Sci. 86 (3) (2019), 472–496. MR 3977906, 10.1086/703571
Reference: [81] François, J.: Dilaton from tractor and matter field from twistor.J. High Energy Phys. 2019 (6) (2019), 18. MR 3982522, 10.1007/JHEP06(2019)018
Reference: [82] François, J.: Bundle geometry of the connection space, covariant hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method.J. High Energy Phys. 2021 (3) (2021), 113 p. MR 4261003
Reference: [83] François, J.: Differential geometry of Gauge theory: An introduction.PoS, Modave 2020 (2021), 002.
Reference: [84] François, J., Parrini, N., Boulanger, N.: Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions.J. High Energy Phys. 2021 (12) (2021), 186. MR 4369415
Reference: [85] Friedrich, H.: Twistor connection and normal conformal Cartan connection.Gen. Relativity Gravitation 8 (5) (1977), 303–312. MR 0474086, 10.1007/BF00771141
Reference: [86] Galperin, A.S., Ivanov, E.A., Ogievetsky, V.I., Sokatchev, E.S.: Harmonic superspace.Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2007. MR 2450736
Reference: [87] Giovanelli, M.: Nothing but coincidences: the point-coincidence and einstein’s struggle with the meaning of coordinates in physics.European J. Philos. Sci. 11 (2) (2021), 45. MR 4254163, 10.1007/s13194-020-00332-7
Reference: [88] Golfand, Y.A., Likhtman, E.P.: Extension of the algebra of Poincare group generators and violation of p invariance.JETP Lett. 13 (1971), 323–326. MR 0672786
Reference: [89] Gover, R.: Aspects of parabolic invariant theory.Proceedings of the 18th Winter School “Geometry and Physics”, 1999, pp. 25–47. MR 1692257
Reference: [90] Hamilton, M.: Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics.1st ed., Universitext. Springer, 2018. MR 3837560
Reference: [91] Hélein, F.: Gauge and gravity theories on a dynamical principal bundle.10 2023.
Reference: [92] Hélein, F., Vey, D.: Curved space-times by crystallization of liquid fiber bundles.Found. Phys. 47 (1) (2017), 1–41. MR 3599605, 10.1007/s10701-016-0039-2
Reference: [93] Hersent, K., Mathieu, P., Wallet, J.C.: Gauge theories on quantum spaces.Phys. Rep. 1014 (2023), 1–83. MR 4567524, 10.1016/j.physrep.2023.03.002
Reference: [94] Jurčo, B., Sämann, C., Schreiber, U., Wolf, M.: Higher sructures in M-theory.Fortsch. Phys. 67 (8–9) (2019), 1910004. MR 4016007
Reference: [95] Jurčo, B., Sämann, C., Wolf, M.: Semistrict higher Gauge theory.JHEP 2015 (4) (2015), 1–67. MR 3351282
Reference: [96] Jurčo, B., Sämann, C., Wolf, M.: Higher groupoid bundles, higher spaces, and self-dual tensor field equations.Fortsch. Phys. 64 (8–9 (2016), 674–717. MR 3548195, 10.1002/prop.201600031
Reference: [97] Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Gauge theory of the conformal and superconformal group.Phys. lett. 69B (1977), 304–308. MR 0446293, 10.1016/0370-2693(77)90552-4
Reference: [98] Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Properties of conformal supergravity.Phys. Rev. D17 (1978), 3179. MR 0523881
Reference: [99] Kasprzak, P.: On a certain approach to quantum homogeneous spaces.Comm. Math. Phys. 313 (1) (2012), 237–255. MR 2928224, 10.1007/s00220-012-1491-2
Reference: [100] Kastor, D.: Komar integrals in higher (and lower) derivative gravity.Classical Quantum Gravity 25 (17) (2008), 175007. MR 2430676, 10.1088/0264-9381/25/17/175007
Reference: [101] Kibble, T.W.B.: Lorentz invariance and the gravitational field.J. Math. Phys. 2 (2) (1961), 212–221. MR 0127952, 10.1063/1.1703702
Reference: [102] Kim, H., Saemann, C.: Adjusted parallel transport for higher Gauge theories.J. Phys. A 53 (44) (2020), 445206. MR 4177087, 10.1088/1751-8121/ab8ef2
Reference: [103] Kobayashi, S.: On connections of Cartan.Canad. J. Math. 8 (1956), 145–156. MR 0077978, 10.4153/CJM-1956-018-8
Reference: [104] Kobayashi, S.: Theory of connections.Ann. Mat. Pura Appl. 43 (1) (1957), 119–194. MR 0096276, 10.1007/BF02411907
Reference: [105] Kobayashi, S.: Canonical forms on frame bundles of higher order contact.Proc. Sympos. Pure Math. American Mathematical Society III (1961), 186–193. MR 0126810
Reference: [106] Kobayashi, S.: Transformation Groups in Differential Geometry.Springer, 1972. Zbl 0246.53031, MR 0355886
Reference: [107] Kobayashi, S., Nagano, T.: On projective connections.J. Math. Mech. 13 (1964), 215–235. MR 0159284
Reference: [108] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. I, Wiley & Sons, 1963. Zbl 0119.37502, MR 0152974
Reference: [109] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. II, Wiley & Sons, 1969. Zbl 0175.48504, MR 0238225
Reference: [110] Kolar, I., Michor, P., Slovak, J.: Natural Operations in Differential Geometry.Springer-Verlag Berlin, 1993. MR 1202431
Reference: [111] Korzyński, M., Lewandowski, J.: The normal conformal Cartan connection and the Bach tensor.Classical Quantum Gravity 20 (16) (2003), 3745–3764. MR 2001693, 10.1088/0264-9381/20/16/314
Reference: [112] Kostant, B.: Graded manifolds, graded Lie theory, and prequantization.Differ. geom. Meth. math. Phys., Proc. Symp. Bonn 1975, Lect. Notes Math., 1977. MR 0580292
Reference: [113] Lazzarini, S., Tidei, C.: Polyakov soldering and second-order frames: The role of the cartan connection.Lett. Math. Phys. 85 (1) (2008), 27–37. MR 2425659, 10.1007/s11005-008-0253-8
Reference: [114] Leites, D.: Introduction to the theory of supermanifolds.Russian Math. Surveys 35 (1) (1980), 1–64. Zbl 0462.58002, MR 0565567, 10.1070/RM1980v035n01ABEH001545
Reference: [115] Marle, C.M.: The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, in Geometry and Topology of Manifolds.vol. 76, Banach Center Publication, 2007. MR 2342856
Reference: [116] McDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and supergravity.Phys. Rev. Lett. 38 (1977), 739–742. MR 0676657, 10.1103/PhysRevLett.38.739
Reference: [117] Merkulov, S.A.: A conformally invariant theory of gravitation and electromagnetism.Classical Quantum Gravity 1 (4) (1984), 349. MR 0758513, 10.1088/0264-9381/1/4/007
Reference: [118] Merkulov, S.A.: The twistor connection and Gauge invariance principle.Comm. Math. Phys. 93 (3) (1984), 325–331. MR 0745687, 10.1007/BF01258531
Reference: [119] Molotkov, V.: Infinite-dimensional and colored supermanifolds.J. Nonlinear Math. Phys. 17 (2021), 375–446. MR 2827484, 10.1142/S140292511000088X
Reference: [120] Nakahara, M.: Geometry, Topology and Physics. 2nd Edition..Graduate Student Series in Physics, Taylor & Francis, 2003. MR 2001829
Reference: [121] Ne’eman, Y., Regge, T.: Gravity and spergravity as Gauge theories on a group manifold.Riv. Nuovo Cim 1 (5) (1978), 1–43. MR 0507169, 10.1007/BF02724472
Reference: [122] Ne’eman, Y., Regge, T.: Gravity and supergravity as Gauge theories on a group manifold.Phys. Lett. B 74 (1978), 54–56. 10.1016/0370-2693(78)90058-8
Reference: [123] Ó Buachalla, R.: Noncommutative complex structures on quantum homogeneous spaces.J. Geom. Phys. 99 (2016), 154–173. MR 3428362, 10.1016/j.geomphys.2015.10.003
Reference: [124] Ochiai, T.: Geometry associated with semi-simple homogeneous spaces.Transactions of the American Mathematical Society 152 (1970), 159–193. MR 0284936, 10.1090/S0002-9947-1970-0284936-6
Reference: [125] Ogiue, K.: Theory of conformal connections.Kodai Math. Sem. Rep. 19 (1967), 193–224. MR 0217723, 10.2996/kmj/1138845392
Reference: [126] O’Raifeartaigh, L.: The dawning of Gauge theory.Princeton Series in Physics, Princeton University Press, 1997. MR 1374603
Reference: [127] Penrose, R.: The twistor program.Rep. Mathematical Phys 12 (1977), 65–76. MR 0465032, 10.1016/0034-4877(77)90047-7
Reference: [128] Penrose, R., MacCallum, M.A.H.: Twistor theory: An approach to the quantisation of fields and space-time..Phys. Rep. 6 (4) (1973), 241–316. MR 0475660, 10.1016/0370-1573(73)90008-2
Reference: [129] Penrose, R., Rindler, W.: Spinors and Space-Time.vol. 1, Cambridge University Press, 1984. MR 0838301
Reference: [130] Penrose, R., Rindler, W.: Spinors and Space-Time.vol. 2, Cambridge University Press, 1986. MR 0838301
Reference: [131] Ravera, L.: On the hidden symmetries of D=11 supergravity.Springer Proc. Math. Stat. 396 (2022), 211–222. MR 4607963
Reference: [132] Ravera, L.: On the role of torsion and higher forms in off-shell supergravity.Fortsch. Phys. 71 (8–9) (2023), 2300036. MR 4637988, 10.1002/prop.202300036
Reference: [133] Rogers, A.: A global theory of supermanifolds.J. Math. Phys. 21 (6) (1980), 1352–1365. Zbl 0447.58003, MR 0574696, 10.1063/1.524585
Reference: [134] Rogers, A.: Supermanifolds.World Scientific Publishing Company, 2007. MR 2320438
Reference: [135] Rovelli, C: Partial observables.Phys. Rev. D 65 (2002), 124013. MR 1926193, 10.1103/PhysRevD.65.124013
Reference: [136] Rovelli, C.: Quantum gravity.Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2004. MR 2106565
Reference: [137] Rovelli, C.: Why gauge?.Found. Phys. 44 (2014), 91–104.
Reference: [138] Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory.Cambridge University Press, 2014.
Reference: [139] Rüdiger, R., Penrose, R.: The Dirac equation and spinning particles in general relativity.Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 377 (1771), 1981, pp. 417–424. MR 0629659
Reference: [140] Sachse, C.: A categorical formulation of superalgebra and supergeometry.arXiv:0802.4067, 2008.
Reference: [141] Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold.Adv. Theor. Math. Phys. 15 (2) (2012), 285–323. MR 2924232, 10.4310/ATMP.2011.v15.n2.a2
Reference: [142] Salam, A., Strathdee, J.: Supersymmetry and superfields.Fortschr. Phys. 26 (2) (1978), 57–142. MR 0495883, 10.1002/prop.19780260202
Reference: [143] Sati, H., Schreiber, U., Stasheff, J.: $L_{\infty }$ algebra connections and applications to String- and Chern-Simons n-transport.2 2008. MR 2742762
Reference: [144] Sauer, T.: Field equations in teleparallel space-time: Einstein’s fernparallelismus approach toward unified field theory.Historia Math. 33 (4) (2006), 399–439, Special Issue on Geometry and its Uses in Physics, 1900-1930. MR 2276051, 10.1016/j.hm.2005.11.005
Reference: [145] Schmitt, T.: Supergeometry and quantum field theory, or: What is a classical configuration?.Rev. Math. Phys. 09(08) (1997), 993–1052. MR 1487885, 10.1142/S0129055X97000348
Reference: [146] Schneider, H.-J.: Principal homogeneous spaces for arbitrary hopf algebras.Israel J. Math. 72 (1) (1990), 167–195. MR 1098988, 10.1007/BF02764619
Reference: [147] Schreiber, U.: Differential cohomology in a cohesive $\infty $-topos.arXiv:1310.7930 [math-ph].
Reference: [148] Sciama, D.W.: The physical structure of general relativity.Rev. Modern Phys. 36 (1964), 463–469. 10.1103/RevModPhys.36.463
Reference: [149] Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program.Graduate text in Mathematics, vol. 166, Springer, 1996. MR 1453120
Reference: [150] Shvarts, A.S.: On the definition of superspace.Theoret. and Math. Phys. 60 91) (1984), 657–660. Zbl 0575.58005, MR 0760438, 10.1007/BF01018248
Reference: [151] Singer, I.M.: Some remark on the Gribov ambiguity.Comm. Math. Phys. 60 (1978), 7–12. MR 0500248, 10.1007/BF01609471
Reference: [152] Singer, I.M.: The geometry of the orbit space for non-abelian gauge theories.Physica Scripta 24 (5) (1981), 817–820. MR 0639408, 10.1088/0031-8949/24/5/002
Reference: [153] Stachel, J.: The hole argument and some physical and philosophical implications.Living Reviews in Relativity 17 (1) (2014), 1. 10.12942/lrr-2014-1
Reference: [154] Steenrod, N.: The Topology of Fibre Bundles. (PMS–14).Princeton University Press, 1951. MR 0039258
Reference: [155] Stelle, K.S., West, P.C.: de Sitter gauge invariance and the geometry of the Einstein-Cartan theory.J. Phys. A. 12 (1979), 205–210. MR 0536913, 10.1088/0305-4470/12/8/003
Reference: [156] Stora, R.: Algebraic structure and topological origin of chiral anomalies.Progress in Gauge Field Theory, Cargese 1983, vol. 115, NATO ASI Ser.B,, Plenum Press, 1984. MR 0782343
Reference: [157] Sullivan, D.: Infinitesimal computations in topology.Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269–331. MR 0646078, 10.1007/BF02684341
Reference: [158] Tamborino, J.: Relational observables in gravity: a review.SIGMA 8 (2012), 017. MR 2942822
Reference: [159] Tanaka, N.: Projective connections and projective transformations.Nagoya Math. J. 12 (1957), 1–24. MR 0105154, 10.1017/S0027763000021905
Reference: [160] Tyutin, L.V.: Gauge invariance in field theory and statistical physics in operator formalism.Lebedev preprint FIAN, 39:1975.
Reference: [161] Unzicker, A., Case, T.: Translation of Einstein’s Attempt of a Unified Field Theory with Teleparallelism.arXiv:physics/0503046 [physics.hist-ph], 2005.
Reference: [162] Utiyama, R.: Invariant Theoretical Interpretation of Interaction.Phys. Rev. 101 (1956), 1597–1607. MR 0078223, 10.1103/PhysRev.101.1597
Reference: [163] Volkov, D.V., Akulov, V.P.: Is the neutrino a goldstone particle?.Phys. Lett. B 46 (1) (1973), 109–110. 10.1016/0370-2693(73)90490-5
Reference: [164] Voronov, A.A.: Mappings of supermanifolds.Theoret. and Math. Phys. 60 (1) (1984), 660–664. MR 0760439, 10.1007/BF01018249
Reference: [165] Wess, J., Zumino, B.: Supergauge transformations in four-dimensions.Nuclear Phys. 70 (1974), 39–50. MR 0356830, 10.1016/0550-3213(74)90355-1
Reference: [166] Wess, J., Zumino, B.: Superspace formulation of supergravity.Phys. Lett. B 66 (4) (1977), 361–364. MR 0456294, 10.1016/0370-2693(77)90015-6
Reference: [167] Weyl, H.: Gravitation and electricity.vol. 1918, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1918.
Reference: [168] Weyl., H.: A new extension of relativity theory.Ann. Physics 59 (1919), 101–133.
Reference: [169] Weyl, H.: Gravitation and the electron.Proceedings of the National Academy of Sciences, vol. 15 (4), 1929, pp. 323–334.
Reference: [170] Wise, D.K.: Topological Gauge Theory, Cartan Geometry, and Gravity.Ph.D. thesis, 2007. MR 2710391
Reference: [171] Wise, D.K.: Symmetric space, cartan connections and gravity in three and four dimensions.SIGMA 5 (2009), 080–098. MR 2529167
Reference: [172] Wise, D.K.: MacDowell–Mansouri gravity and Cartan geometry.Classical Quantum Gravity 27 (2010), 155010. MR 2659245, 10.1088/0264-9381/27/15/155010
Reference: [173] Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of Gauge fields.Phys. Rev. D 12 (1975), 3845–3857. MR 0426712, 10.1103/PhysRevD.12.3845
Reference: [174] Yang, C.N.: Monopoles and fiber bundles.Subnuclear Series 14 (1978), 53–84.
Reference: [175] Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance.Phys. Rev. 96 (1954), 191–195. MR 0065437, 10.1103/PhysRev.96.191
Reference: [176] Yates, R.G.: Fibre bundles and supersymmetries.Comm. Math. Phys. 76 (1980), 255–268. MR 0588049, 10.1007/BF02193556
Reference: [177] Zardecki, A.: A formulation of supergravity based on Cartan’s connection.J. Math. Phys. 34 (1993), 1487–1496. MR 1210229, 10.1063/1.530168
Reference: [178] Zardecki, A.: Gravity as a Gauge theory with Cartan connection.J. Math. Phys. 29 (1998), 1661–1666. MR 0946342, 10.1063/1.528197
.

Files

Files Size Format View
ArchMathRetro_060-2024-4_5.pdf 814.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo