Previous |  Up |  Next

Article

Title: Exact solutions of generalized Lane-Emden equations of the second kind (English)
Author: Kasapoğlu, Kısmet
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 6
Year: 2024
Pages: 747-755
Summary lang: English
.
Category: math
.
Summary: Contact and Lie point symmetries of a certain class of second order differential equations using the Lie symmetry theory are obtained. Generators of these symmetries are used to obtain first integrals and exact solutions of the equations. This class of equations is transformed into the so-called generalized Lane-Emden equations of the second kind $$ y''(x)+\frac {k}{x}y'(x)+ g(x){\rm e}^{ny}=0. $$ Then we consider two types of functions $g(x)$ and present first integrals and exact solutions of the Lane-Emden equation for them. One of the considered cases is new. (English)
Keyword: Lie point symmetry
Keyword: contact symmetry
Keyword: first integral
Keyword: Lane-Emden differential equation
MSC: 34A05
MSC: 34A34
MSC: 34C14
DOI: 10.21136/AM.2024.0220-23
.
Date available: 2024-12-13T18:59:03Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152667
.
Reference: [1] Bluman, G. W., Kumei, S.: Symmetries and Differential Equations.Applied Mathematical Sciences 81. Springer, Berlin (1989). Zbl 0698.35001, MR 1006433, 10.1007/978-1-4757-4307-4
Reference: [2] Bozhkov, Y., Martins, A. C. Gilli: Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents.Nonlinear Anal., Theory Methods Appl., Ser. A 57 (2004), 773-793. Zbl 1061.34030, MR 2067733, 10.1016/j.na.2004.03.016
Reference: [3] Chambré, P. L.: On the solution of the Poisson-Boltzmann equation with application to the theory of thermal explosions.J. Chem. Phys. 20 (1952), 1795-1797. 10.1063/1.1700291
Reference: [4] Emden, R.: Gaskugeln. Anwendung der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme.B. G. Teubner, Leipzig (1907), German \99999JFM99999 38.0952.02. MR 1547801
Reference: [5] Frank-Kamenetskii, D. A.: Diffusion and Heat Transfer in Chemical Kinetics.Plenum Press, New York (1969).
Reference: [6] Goenner, H.: Symmetry transformations for the generalized Lane-Emden equation.Gen. Relativ. Gravitation 33 (2001), 833-841. Zbl 0989.83024, MR 1839009, 10.1023/A:1010255807935
Reference: [7] Harley, C., Momoniat, E.: Steady state solutions for a thermal explosion in a cylindrical vessel.Mod. Phys. Lett. B 21 (2007), 831-841. Zbl 1115.80005, 10.1142/S0217984907013250
Reference: [8] Harley, C., Momoniat, E.: Alternate derivation of the critical value of the Frank-Kamenetskii parameter in cylindrical geometry.J. Nonlinear Math. Phys., Suppl. 1 15 (2008), 69-76. MR 2434706, 10.2991/jnmp.2008.15.s1.6
Reference: [9] Harley, C., Momoniat, E.: Instability of invariant boundary conditions of a generalized Lane-Emden equation of the second-kind.Appl. Math. Comput. 198 (2008), 621-633. Zbl 1146.34031, MR 2405965, 10.1016/j.amc.2007.08.077
Reference: [10] Hydon, P. E.: Symmetry Methods for Differential Equations: A Beginner's Guide.Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2000). Zbl 0951.34001, MR 1741548, 10.1017/CBO9780511623967
Reference: [11] Ibragimov, N. H.: Elementary Lie Group Analysis and Ordinary Differential Equations.Wiley Series in Mathematical Methods in Practice 4. Willey, Chichester (1999). Zbl 1047.34001, MR 1679646
Reference: [12] Khalique, C. M., Mahomed, F. M., Muatjetjeja, B.: Langrangian formulation of a generalized Lane-Emden equation and double reduction.J. Nonlinear Math. Phys. 15 (2008), 152-161. Zbl 1169.34033, MR 2430716, 10.2991/jnmp.2008.15.2.3
Reference: [13] Khalique, C. M., Ntsime, P.: Exact solutions of the Lane-Emden-type equation.New Astronomy 13 (2008), 476-480. 10.1016/j.newast.2008.01.002
Reference: [14] Muatjetjeja, B., Khalique, C. M.: Exact solutions of the generalized Lane-Emden equations of the first and second kind.Pramana - J. Phys. 77 (2011), 545-554. 10.1007/S12043-011-0174-4
Reference: [15] Oliveri, F.: Lie symmetries of differential equations: Classical results and recent contributions.Symmetry 2 (2010), 658-706. Zbl 1284.22014, MR 2804858, 10.3390/sym2020658
Reference: [16] Olver, P. J.: Application of Lie Groups to Differential Equations.Graduate Texts in Mathematics 107. Springer, New York (1993). Zbl 0785.58003, MR 1240056, 10.1007/978-1-4612-4350-2
Reference: [17] Stephani, H.: Differential Equations: Their Solution Using Symmetries.Cambridge University Press, Cambridge (1989). Zbl 0704.34001, MR 1041800, 10.1017/CBO9780511599941
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo