Keywords: Navier-Stokes equation; Euler equation; ill-posedness; Besov space
Summary: We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from $u_0$ are discontinuous at $t = 0$.
[4] Cheskidov, A., Dai, M.: Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces. J. Math. Anal. Appl. 481 (2020), Article ID 13493, 16 pages. DOI 10.1016/j.jmaa.2019.123493 | MR 4007200 | Zbl 1426.35057
[6] Guo, Z., Li, J., Yin, Z.: Local well-posedness of the incompressible Euler equations in $B_{\infty,1}^1$ and the inviscid limit of the Navier-Stokes equations. J. Funct. Anal. 276 (2019), 2821-2830. DOI 10.1016/j.jfa.2018.07.004 | MR 3926133 | Zbl 1412.35218
[10] Misiołek, G., Yoneda, T.: Local ill-posedness of the incompresssible Euler equations in $C^1$ and $B^1_{\infty,1}$. Math. Ann. 363 (2016), 243-268. DOI 10.1007/s00208-015-1213-0 | MR 3451386 | Zbl 1336.35280
[11] Misiołek, G., Yoneda, T.: Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces. Trans. Am. Math. Soc. 370 (2018), 4709-4730. DOI 10.1090/tran/7101 | MR 3812093 | Zbl 1388.35160
[12] Pak, H. C., Park, Y. J.: Existence of solutions for the Euler equations in a critical Besov space $B^1_{\infty,1}(\Bbb R^n)$. Commun. Partial Differ. Equations 29 (2004), 1149-1166. DOI 10.1081/PDE-200033764 | MR 2097579 | Zbl 1091.76006