Previous |  Up |  Next

Article

Title: Relative co-annihilators in lattice equality algebras (English)
Author: Niazian, Sogol
Author: Aaly Kologani, Mona
Author: Borzooei, Rajab Ali
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 4
Year: 2024
Pages: 585-602
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among $ \vee $-irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra $ \mathcal {\mathbb {E}} $ and $ \mathbb {F} $ a filter of $ \mathcal {\mathbb {E}} $, we define the set of all $ \mathbb {F} $-involutive filters of $ \mathcal {\mathbb {E}} $ and show that by defining some operations on it, it makes a BL-algebra. (English)
Keyword: equality algebra
Keyword: annihilator
Keyword: co-annihilator
Keyword: relative co-annihilator
Keyword: filter
MSC: 03G10
MSC: 06B75
MSC: 06B99
DOI: 10.21136/MB.2024.0120-23
.
Date available: 2024-12-13T19:07:41Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152681
.
Reference: [1] Abujabal, H. A. S., Obaid, M. A., Aslam, M., Thaheem, A. B.: On annihilators of BCK-algebras.Czech. Math. J. 45 (1995), 727-735. Zbl 0847.06009, MR 1354929, 10.1023/B:CMAJ.0000024536.04596.67
Reference: [2] Borzooei, R. A., Zebardast, F., Kologani, M. Aaly: Some type filters in equality algebras.Categ. Gen. Algebr. Struct. Appl. 7 (2017), 33-55. Zbl 1423.03257, MR 3681517
Reference: [3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78. Springer, New York (1981). Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3
Reference: [4] Ciungu, L. C.: Internal states on equality algebras.Soft Comput. 19 (2015), 939-953. Zbl 1392.06013, 10.1007/s00500-014-1494-3
Reference: [5] Davey, B. A.: Some annihilator conditions on distributive lattices.Algebra Univers. 4 (1974), 316-322. Zbl 0299.06007, MR 0357261, 10.1007/BF02485743
Reference: [6] Filipoiu, A.: About Baer extensions of MV-algebras.Math. Jap. 40 (1994), 235-241. Zbl 0808.06015, MR 1297237
Reference: [7] Hájek, P.: Metamathematics of Fuzzy Logic.Trends in Logic-Studia Logica Library 4. Kluwer Academic, Dordrecht (1998). Zbl 0937.03030, MR 1900263, 10.1007/978-94-011-5300-3
Reference: [8] Halaš, R.: Annihilators in BCK-algebras.Czech. Math. J. 53 (2003), 1001-1007. Zbl 1080.06035, MR 2018845, 10.1023/B:CMAJ.0000024536.04596.67
Reference: [9] Jenei, S.: Equality algebras.Stud. Log. 100 (2012), 1201-1209. Zbl 1270.03138, MR 3001053, 10.1007/s11225-012-9457-0
Reference: [10] Jenei, S., Kóródi, L.: On the variety of equality algebras.Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology Atlantis Press, Amsterdam (2011), 153-155. Zbl 1254.08004, 10.2991/eusflat.2011.1
Reference: [11] Leuştean, L.: Some algebraic properties of non-commutative fuzzy structures.Stud. Inf. Control 9 (2000), 365-370.
Reference: [12] Leuştean, L.: Baer extensions of BL-algebras.J. Mult.-Val. Log. Soft Comput. 12 (2006), 321-336. Zbl 1165.03057, MR 2288820
Reference: [13] Maroof, F. G., Saeid, A. Borumand, Eslami, E.: On co-annihilators in residuated lattices.J. Intell. Fuzzy Syst. 31 (2016), 1263-1270. Zbl 1366.03241, MR 3469089, 10.3233/IFS-162192
Reference: [14] Meng, B. L., Xin, X. L.: Generalized co-annihilator of BL-algebras.Open Math. 13 (2015), 639-654. Zbl 1347.03109, MR 3414771, 10.1515/math-2015-0060
Reference: [15] Niazian, S., Kologani, M. Aaly, Arya, S. Homayon, Borzooei, R. A.: On co-annihilators in equality algebras.Miskolc Math. Notes 24 (2023), 933-951. Zbl 7777173, MR 4619775, 10.18514/MMN.2023.3816
Reference: [16] Paad, A.: Ideals in bounded equality algebras.Filomat 33 (2019), 2113-2123. Zbl 1499.06072, MR 4036366, 10.2298/FIL1907113P
Reference: [17] Turunen, E.: BL-algebras of basic fuzzy logic.Mathware Soft Comput. 6 (1999), 49-61. Zbl 0962.03020, MR 1724318
Reference: [18] Xu, Y., Ruan, D., Qin, K., Liu, J.: Lattice-Valued Logic: An Alternative Approach to Treat Fuzziness and Incomparability.Studies in Fuzziness and Soft Computing 132. Springer, Berlin (2003). Zbl 1048.03003, MR 2027329, 10.1007/978-3-540-44847-1
Reference: [19] Zebardast, F., Borzooei, R. A., Kologani, M. Aaly: Results on equality algebras.Inf. Sci. 381 (2017), 270-282. Zbl 1429.03219, MR 3584860, 10.1016/j.ins.2016.11.027
Reference: [20] Zou, Y. X., Xin, X. L., He, P. F.: On annihilators in BL-algebras.Open Math. 14 (2016), 324-337. Zbl 1349.06034, MR 3505725, 10.1515/math-2016-0029
.

Files

Files Size Format View
MathBohem_149-2024-4_8.pdf 265.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo