Previous |  Up |  Next

Article

Title: The Bogomolov multiplier of groups of order $p^7$ and exponent $p$ (English)
Author: Araghi Rostami, Zeinab
Author: Parvizi, Mohsen
Author: Niroomand, Peyman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 955-974
Summary lang: English
.
Category: math
.
Summary: We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$ $(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups. (English)
Keyword: commutativity-preserving exterior product
Keyword: ${\widetilde {B}_0}$-pairing
Keyword: curly exterior square
Keyword: Bogomolov multiplier
MSC: 13A50
MSC: 14E08
MSC: 14M20
MSC: 20D15
DOI: 10.21136/CMJ.2024.0245-23
.
Date available: 2024-12-15T06:33:12Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152683
.
Reference: [1] Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational.Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. Zbl 0244.14017, MR 0321934, 10.1112/PLMS/S3-25.1.75
Reference: [2] Blyth, R. D., Morse, R. F.: Computing the nonabelian tensor squares of polycyclic groups.J. Algebra 321 (2009), 2139-2148. Zbl 1195.20035, MR 2501513, 10.1016/j.jalgebra.2008.12.029
Reference: [3] Bogomolov, F. A.: The Brauer group of quotient spaces by linear group actions.Math. USSR, Izv. 30 (1988), 455-485. Zbl 0679.14025, MR 0903621, 10.1070/IM1988v030n03ABEH001024
Reference: [4] Chen, Y., Ma, R.: Bogomolov multipliers of some groups of order $p^6$.Commun. Algebra 49 (2021), 242-255. Zbl 1459.13007, MR 4193627, 10.1080/00927872.2020.1797074
Reference: [5] Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E.: Noether's problem and the unramified Brauer groups for groups of order 64.Int. Math. Res. Not. 12 (2010), 2329-2366. Zbl 1196.12005, MR 2652224, 10.1093/imrn/rnp217
Reference: [6] Chu, H., Kang, M.-C.: Rationality of $p$-group actions.J. Algebra 237 (2001), 673-690. Zbl 1023.13007, MR 1816710, 10.1006/jabr.2000.8615
Reference: [7] Eick, B., Nickel, W.: Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group.J. Algebra 320 (2008), 927-944. Zbl 1163.20022, MR 2422322, 10.1016/j.jalgebra.2008.02.041
Reference: [8] Hoshi, A., Kang, M.-C.: Unramified Brauer groups for groups of order $p^5$.Available at https://arxiv.org/abs/1109.2966 (2011), 14 pages. 10.48550/arXiv.1109.2966
Reference: [9] Jezernik, U., Moravec, P.: Bogomolov multipliers of groups of order 128.Exp. Math. 23 (2014), 174-180. Zbl 1307.13010, MR 3223772, 10.1080/10586458.2014.886980
Reference: [10] Kunyavskii, B.: The Bogomolov multiplier of finite simple groups.Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. Zbl 1204.14006, MR 2605170, 10.1007/978-0-8176-4934-0_8
Reference: [11] Michailov, I.: Bogomolov multipliers for some $p$-groups of nilpotency class 2.Acta Math. Sin., Engl. Ser. 32 (2016), 541-552. Zbl 1346.14037, MR 3483925, 10.1007/s10114-016-3667-8
Reference: [12] Miller, C.: The second homology group of a group; relations among commutators.Proc. Am. Math. Soc. 3 (1952), 588-595. Zbl 0047.25703, MR 0049191, 10.1090/S0002-9939-1952-0049191-5
Reference: [13] Moravec, P.: Groups of order $p^5$ and their unramified Brauer groups.J. Algebra 372 (2012), 420-427. Zbl 1303.13010, MR 2990018, 10.1016/j.jalgebra.2012.10.002
Reference: [14] Moravec, P.: Unramified Brauer groups of finite and infinite groups.Am. J. Math. 134 (2012), 1679-1704. Zbl 1346.20072, MR 2999292, 10.1353/ajm.2012.0046
Reference: [15] Moravec, P.: Unramified Brauer groups and isoclinism.ARS Math. Contemp. 7 (2014), 337-340. Zbl 1327.14099, MR 3240441, 10.26493/1855-3974.392.9fd
Reference: [16] Noether, E.: Gleichungen mit vorgeschriebener Gruppe.Math. Ann. 78 (1917), 221-229 German \99999JFM99999 46.0135.01. MR 1511893, 10.1007/BF01457099
Reference: [17] O'Brien, E.: Polycyclic group.Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages.
Reference: [18] Saltman, D. J.: Noether's problem over an algebraically closed field.Invent. Math. 77 (1984), 71-84. Zbl 0546.14014, MR 0751131, 10.1007/BF01389135
Reference: [19] Shafarevich, I. R.: The Lüroth's problem.Proc. Steklov Inst. Math. 183 (1991), 241-246. Zbl 0731.14035, MR 1092032
Reference: [20] Swan, R. G.: Noether's problem in Galois theory.Emmy Noether in Bryn Mawr Springer, New York (1983), 21-40. Zbl 0538.12012, MR 0713790, 10.1007/978-1-4612-5547-5_2
Reference: [21] Wilkinson, D.: The groups of exponent $p$ and order $p^7$ ($p$ any prime).J. Algebra 118 (1988), 109-119. Zbl 0651.20025, MR 0961329, 10.1016/0021-8693(88)90051-8
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo