Title: | Dual modules and reflexive modules with respect to a semidualizing module (English) |
Author: | Mao, Lixin |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 4 |
Year: | 2024 |
Pages: | 983-1005 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi $-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules. (English) |
Keyword: | semidualizing module |
Keyword: | $C$-dual module |
Keyword: | $C$-torsionless module |
Keyword: | $C$-reflexive module |
MSC: | 16D40 |
MSC: | 16D50 |
MSC: | 18G25 |
DOI: | 10.21136/CMJ.2024.0280-23 |
. | |
Date available: | 2024-12-15T06:34:08Z |
Last updated: | 2024-12-16 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152686 |
. | |
Reference: | [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13. Springer, New York (1974). Zbl 0301.16001, MR 0417223, 10.1007/978-1-4684-9913-1 |
Reference: | [2] Angeleri-Hügel, L.: Endocoherent modules.Pac. J. Math. 212 (2003), 1-11. Zbl 1056.16001, MR 2016564, 10.2140/pjm.2003.212.1 |
Reference: | [3] Azumaya, G.: Finite splitness and finite projectivity.J. Algebra 106 (1987), 114-134. Zbl 0607.16017, MR 0878471, 10.1016/0021-8693(87)90024-X |
Reference: | [4] Bennis, D., Maaouy, R. El, Rozas, J. R. García, Oyonarte, L.: On relative counterpart of Auslander's conditions.J. Algebra Appl. 22 (2023), Arrticle ID 2350015, 25 pages. Zbl 1507.18013, MR 4526175, 10.1142/S0219498823500159 |
Reference: | [5] Camillo, V.: Coherence for polynomial rings.J. Algebra 132 (1990), 72-76. Zbl 0701.16023, MR 1060832, 10.1016/0021-8693(90)90252-J |
Reference: | [6] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1960), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3 |
Reference: | [7] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7 |
Reference: | [8] Colby, R. R.: Rings which have flat injective modules.J. Algebra 35 (1975), 239-252. Zbl 0306.16015, MR 0376763, 10.1016/0021-8693(75)90049-6 |
Reference: | [9] Dai, G., Ding, N.: Coherent rings and absolutely pure precovers.Commun. Algebra 47 (2019), 4743-4748. Zbl 1470.16008, MR 3991048, 10.1080/00927872.2019.1595637 |
Reference: | [10] Ding, N.: Dual modules of specific modules.J. Math. Res. Expo. 10 (1990), 337-340 Chinese. Zbl 0788.16005, MR 1072438 |
Reference: | [11] Ding, N., Chen, J.: Relative coherence and preenvelopes.Manuscr. Math. 81 (1993), 243-262. Zbl 0802.16023, MR 1248754, 10.1007/BF02567857 |
Reference: | [12] Enochs, E. E., Jenda, O. M. G.: Resolvents and dimensions of modules and rings.Arch. Math. 56 (1991), 528-532. Zbl 0694.16012, MR 1106493, 10.1007/BF01246767 |
Reference: | [13] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662 |
Reference: | [14] Jones, M. Finkel: $f$-projectivity and flat epimorphisms.Commun. Algebra 9 (1981), 1603-1616. Zbl 0472.16008, MR 0630577, 10.1080/00927878108822670 |
Reference: | [15] Jones, M. Finkel, Teply, M. L.: Coherent rings of finite weak global dimension.Commun. Algebra 10 (1982), 493-503. Zbl 0492.16019, MR 0647834, 10.1080/00927878208822731 |
Reference: | [16] Foxby, H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 267-284. Zbl 0272.13009, MR 0327752, 10.7146/math.scand.a-11434 |
Reference: | [17] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules.de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2006). Zbl 1121.16002, MR 2251271, 10.1515/9783110199727 |
Reference: | [18] Golod, E. S.: $G$-dimension and generalized perfect ideals.Tr. Mat. Inst. Steklova 165 (1984), 62-66 Russian. Zbl 0577.13008, MR 0752933 |
Reference: | [19] Holm, H., Jørgensen, H.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. Zbl 1094.13021, MR 2203625, 10.1016/j.jpaa.2005.07.010 |
Reference: | [20] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289 |
Reference: | [21] Huang, Z.: On the $C$-flatness and injectivity of character modules.Electron. Res. Arch. 30 (2022), 2899-2910. Zbl 1511.16002, MR 4432007, 10.3934/era.2022147 |
Reference: | [22] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings.J. Pure Appl. Algebra 161 (2001), 167-176. Zbl 0989.16005, MR 1834083, 10.1016/S0022-4049(00)00109-2 |
Reference: | [23] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8 |
Reference: | [24] Mao, L.: Envelopes, covers and semidualizing modules.J. Algebra Appl. 18 (2019), Article ID 1950137, 12 pages. Zbl 1472.16003, MR 3977798, 10.1142/S0219498819501378 |
Reference: | [25] Mao, L., Ding, N.: Relative flatness, Mittag-Leffler modules, and endocoherence.Commun. Algebra 34 (2006), 3281-3299. Zbl 1162.16002, MR 2252672, 10.1080/00927870600778555 |
Reference: | [26] Salimi, M., Tavasoli, E., Moradifar, P., Yassemi, S.: Syzygy and torsionless modules with respect to a semidualizing module.Algebr. Represent. Theory 17 (2014), 1217-1234. Zbl 1309.13016, MR 3228484, 10.1007/s10468-013-9443-x |
Reference: | [27] Sather-Wagstaff, S.: Semidualizing modules.Available at \let \relax \brokenlink{https://www.ndsu.edu/}{pubweb/ ssatherw/DOCS/survey.pdf} (2008), 34 pages. |
Reference: | [28] Stenström, B.: Coherent rings and $FP$-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0258888, 10.1112/jlms/s2-2.2.323 |
Reference: | [29] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121 |
Reference: | [30] Tang, X.: $FP$-injectivity relative to a semidualizing bimodule.Publ. Math. Debr. 80 (2012), 311-326. Zbl 1274.16005, MR 2943005, 10.5486/PMD.2012.4907 |
Reference: | [31] Vasconcelos, W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies 14. North-Holland, Amsterdam (1974). Zbl 0296.13005, MR 0498530, 10.1016/s0304-0208(08)x7021-5 |
Reference: | [32] Yan, X. G., Zhu, X. S.: Characterizations of some rings with $\mathcal{C}$-projective, $\mathcal{C}$-($FP$-)injective and $\mathcal{C}$-flat modules.Czech. Math. J. 61 (2011), 641-652. Zbl 1249.13004, MR 2853080, 10.1007/s10587-011-0036-8 |
Reference: | [33] Zhang, D., Ouyang, B.: Semidualizing modules and related modules.J. Algebra Appl. 10 (2011), 1261-1282. Zbl 1254.16003, MR 2864574, 10.1142/S0219498811005695 |
. |
Fulltext not available (moving wall 24 months)