Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
triangulated category; $n$-angulated category; exact category; $(n-2)$-exact category; right $n$-angulated category; one-sided $n$-suspended category
Summary:
For an integer $n\geq 3$, we introduce a simultaneous generalization of $(n-2)$-exact categories and $n$-angulated categories, referred to as one-sided $n$-suspended categories. Notably, one-sided $n$-angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their $n$-angulated counterparts. Additionally, we present a method for constructing $n$-angulated quotient categories from Frobenius $n$-prile categories. Our results unify and extend the previous work of Jasso on $n$-exact categories, Lin on $(n+2)$-angulated categories, and Li on one-sided suspended categories.
References:
[1] Bergh, P. A., Thaule, M.: The axioms for $n$-angulated categories. Algebr. Geom. Topol. 13 (2013), 2405-2428. DOI 10.2140/agt.2013.13.2405 | MR 3073923 | Zbl 1272.18008
[2] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. DOI 10.1515/CRELLE.2011.177 | MR 3021448 | Zbl 1271.18013
[3] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. DOI 10.1007/s00209-016-1619-8 | MR 3519980 | Zbl 1356.18005
[4] Li, Z.-W.: Homotopy theory in additive categories with suspensions. Commun. Algebra 49 (2021), 5137-5170. DOI 10.1080/00927872.2021.1938102 | MR 4328528 | Zbl 1484.18023
[5] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs. Czech. Math. J. 65 (2015), 953-968. DOI 10.1007/s10587-015-0220-3 | MR 3441328 | Zbl 1363.18009
[6] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. DOI 10.1080/00927872.2016.1175591 | MR 3562541 | Zbl 1371.18010
Partner of
EuDML logo