Title: | Mean values related to the Dedekind zeta-function (English) |
Author: | Tang, Hengcai |
Author: | Wang, Youjun |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 4 |
Year: | 2024 |
Pages: | 1265-1274 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number. (English) |
Keyword: | cusp form |
Keyword: | Dedekind zeta-function |
Keyword: | $L$-function |
MSC: | 11F11 |
MSC: | 11F30 |
MSC: | 11F66 |
MSC: | 11N37 |
DOI: | 10.21136/CMJ.2024.0252-24 |
. | |
Date available: | 2024-12-15T06:41:26Z |
Last updated: | 2024-12-16 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152700 |
. | |
Reference: | [1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function.J. Am. Math. Soc. 30 (2017), 205-224. Zbl 1352.11065, MR 3556291, 10.1090/jams/860 |
Reference: | [2] Chakraborty, K., Krishnamoorthy, K.: On moments of non-normal number fields.J. Number Theory 238 (2022), 183-196. Zbl 1505.11076, MR 4430097, 10.1016/j.jnt.2021.08.008 |
Reference: | [3] Fomenko, O. M.: Mean values associated with the Dedekind zeta function.J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. MR 2722976, 10.1007/s10958-008-0126-9 |
Reference: | [4] Good, A.: The square mean of Dirichlet series associated with cusp forms.Mathematika 29 (1982), 278-295. Zbl 0497.10016, MR 0696884, 10.1112/S0025579300012377 |
Reference: | [5] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications.John Wiley & Sohns, New York (1985). Zbl 0556.10026, MR 792089 |
Reference: | [6] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms.Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. Zbl 0787.11035, MR 1220467 |
Reference: | [7] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums.Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). Zbl 0671.10031, MR 0910497 |
Reference: | [8] Kim, H. H.: Functoriality and number of solutions of congruences.Acta Arith. 128 (2007), 235-243. Zbl 1135.11051, MR 2313992, 10.4064/aa128-3-4 |
Reference: | [9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions.Int. Math. Res. Not. 2023 (2023), 11453-11470. Zbl 1541.11046, MR 4609788, 10.1093/imrn/rnac153 |
Reference: | [10] Liu, H., Li, S., Zhang, D.: Power moments of automorphic $L$-function attached to Maass forms.Int. J. Number Theory 12 (2016), 427-443. Zbl 1335.11031, MR 3461440, 10.1142/S1793042116500251 |
Reference: | [11] Liu, H.: Mean value estimates related to the Dedekind zeta-function.Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. Zbl 1478.11112, MR 4344605, 10.1007/s12044-021-00648-1 |
Reference: | [12] Lü, G.: Mean values connected with the Dedekind zeta-function of a non-normal cubic field.Cent. Eur. J. Math. 11 (2013), 274-282. Zbl 1292.11108, MR 3000644, 10.2478/s11533-012-0133-4 |
. |
Fulltext not available (moving wall 24 months)