Previous |  Up |  Next

Article

Title: Mean values related to the Dedekind zeta-function (English)
Author: Tang, Hengcai
Author: Wang, Youjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1265-1274
Summary lang: English
.
Category: math
.
Summary: Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number. (English)
Keyword: cusp form
Keyword: Dedekind zeta-function
Keyword: $L$-function
MSC: 11F11
MSC: 11F30
MSC: 11F66
MSC: 11N37
DOI: 10.21136/CMJ.2024.0252-24
.
Date available: 2024-12-15T06:41:26Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152700
.
Reference: [1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function.J. Am. Math. Soc. 30 (2017), 205-224. Zbl 1352.11065, MR 3556291, 10.1090/jams/860
Reference: [2] Chakraborty, K., Krishnamoorthy, K.: On moments of non-normal number fields.J. Number Theory 238 (2022), 183-196. Zbl 1505.11076, MR 4430097, 10.1016/j.jnt.2021.08.008
Reference: [3] Fomenko, O. M.: Mean values associated with the Dedekind zeta function.J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. MR 2722976, 10.1007/s10958-008-0126-9
Reference: [4] Good, A.: The square mean of Dirichlet series associated with cusp forms.Mathematika 29 (1982), 278-295. Zbl 0497.10016, MR 0696884, 10.1112/S0025579300012377
Reference: [5] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications.John Wiley & Sohns, New York (1985). Zbl 0556.10026, MR 792089
Reference: [6] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms.Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. Zbl 0787.11035, MR 1220467
Reference: [7] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums.Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). Zbl 0671.10031, MR 0910497
Reference: [8] Kim, H. H.: Functoriality and number of solutions of congruences.Acta Arith. 128 (2007), 235-243. Zbl 1135.11051, MR 2313992, 10.4064/aa128-3-4
Reference: [9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions.Int. Math. Res. Not. 2023 (2023), 11453-11470. Zbl 1541.11046, MR 4609788, 10.1093/imrn/rnac153
Reference: [10] Liu, H., Li, S., Zhang, D.: Power moments of automorphic $L$-function attached to Maass forms.Int. J. Number Theory 12 (2016), 427-443. Zbl 1335.11031, MR 3461440, 10.1142/S1793042116500251
Reference: [11] Liu, H.: Mean value estimates related to the Dedekind zeta-function.Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. Zbl 1478.11112, MR 4344605, 10.1007/s12044-021-00648-1
Reference: [12] Lü, G.: Mean values connected with the Dedekind zeta-function of a non-normal cubic field.Cent. Eur. J. Math. 11 (2013), 274-282. Zbl 1292.11108, MR 3000644, 10.2478/s11533-012-0133-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo