[1] Akbarzadeh, A., Katsikas, S.:
Identifying critical components in large scale cyber physical systems. In: IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW), IEEE 2020, pp. 230-236.
DOI
[2] Alhomidi, M., Reed, M.:
Attack graph-based risk assessment and optimization approach. Int. J. Netw. Secur. Appl. 6 (2014), 3, 31-43.
DOI
[3] Beyza, J., Yusta, J. M.:
Integrated risk assessment for robustness evaluation and resilience optimisation of power systems after cascading failures. Energies 14 (2021), 7, 1-18.
DOI
[4] Bhuiyan, M. Z. A., Anders, G. J., Philhower, J., Du, S.:
Review of static risk-based security assessment in power system. IET Cyper-Phys. Syst.: Theory Appl. 4 (2019), 3, 233-239.
DOI
[5] Chermitti, A., Bencherif, M., Nakoul, Z., Bibitriki, N., Benyoucef, B.:
Assessment parameters and matching between the sites and wind turbines. Physics Procedia 55 (2014), 192-198.
DOI
[6] Chen, B., Yang, Z., Zhang, Y., Chen, Y., Zhao, J.:
Risk assessment of cyber-attacks on power grids considering the characteristics of attack behaviors. IEEE Access 8 (2020), 8, 148331-148344.
DOI
[7] Cheng, Y., Elsayed, E., Chen, X.:
Random multi hazard resilience modeling of engineered systems and critical infrastructure. Reliab. Eng. Syst. Safe. 209 (2021), 1-13.
DOI
[8] CVSS:
Common Vulnerability Scoring System version 3.1. 2020.
DOI
[9] Fang, D. Z., David, A. K., Kai, C., Yunli, C.:
Improved hybrid approach to transient stability assessment. IEE Proc., Gener. Transm. Distrib. 152 (2005), 2, 201-207.
DOI
[10] Freeman, L. C.:
A set of measures of centrality based on betweenness. Sociometry 40 (1977), 35-41.
DOI
[11] FVL:
Forescout Vedere Labs. OT: ICEFALL: The legacy of “insecure by design” and its implications for certifications and risk management. 2022.
DOI
[12] Henneaux, P., Labeau, P. E., Maun, J. C., Haarla, L.:
A two-level probabilistic risk assessment of cascading outages. IEEE Trans. Power Syst. 31 (2015), 2393-2403.
DOI
[13] Kartli, N., Bostanci, E., Guzel, M.S.:
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 3195-3227.
DOI |
MR 4794582
[14] Katz, L.:
A new status index derived from sociometric data analysis. Psychometrika 18 (1953), 39-43.
DOI |
MR 0058182
[15] Leao, B. P., Vempati, J., Bhela, S., Ahlgrim, T., Arnold, D.:
Augmented digital twin for identification of most critical cyberattacks in industrial systems. (2023). In: arXiv preprint:
DOI
[16] Li, X., Zhou, C., Tian, Y. C., Xiong, N., Qin, Y.:
Asset-based dynamic impact assessment of cyberattacks for risk analysis in industrial control systems. IEEE Trans. Ind. Inf. 14 (2018), 608-618.
DOI
[17] Liu, C., Alrowaili, Y., Saxena, N., Konstantinou, C.:
Cyber risks to critical smart grid assets of industrial control systems. Energies 14 (2021), 1-19.
DOI
[18] Liu, K., Xie, Y., Xie, S., Sun, L.:
SEAG: A novel dynamic security risk assessment method for industrial control systems with consideration of social engineering. J. Process Control 132 (2023), 1-10.
DOI
[19] Lyu, X., Ding, Y., Yang, S. H.:
Bayesian network based C2P risk assessment for cyber-physical systems. IEEE Access 8 (2020), 88506-88517.
DOI
[20] Martínez, G.E., Gonzalez, C.I., Mendoza, O., Melin, P.:
General type-2 fuzzy Sugeno integral for edge detection. J. Imaging 5 (2019), 8, 1-20.
DOI
[21] Mason, O., Verwoerd, M.:
Graph theory and networks in biology. IET Syst. Boil. 1 (2007), 89-119.
DOI
[22] Murofushi, T., Sugeno, M.:
A theory of fuzzy measures. Representation, the Choquet integral and null sets. J. Math. Anal. Appl. 159 (1991), 2, 532-549.
DOI |
MR 1120951
[23] Nourian, A., Madnick, S.:
A systems theoretic approach to the security threats in cyber physical systems applied to Stuxnet. IEEE Trans. Dependable Secur. Comput. 15 (2018), 1, 2-13.
DOI
[24] Ou, X., Singhal, A.: Quantitative Security Risk Assessment of Enterprise Networks. Springer, 2011.
[25] Qu, Z., Sun, W., Dong, J., Zhao, J., Li, Y.:
Electric power cyber-physical systems vulnerability assessment under cyber-attack. Front. Energy Res. 10 (2023), 1-12.
DOI
[26] Rahman, I., Mohamad-Saleh, J.:
Hybrid bio-Inspired computational intelligence techniques for solving power system optimization problems: A comprehensive survey. Appl. Soft Comput. 69 (2018), 72-130.
DOI
[27] Salayma, M.:
Threat modelling in Internet of Things (IoT) environments using dynamic attack graphs. Front. Internet of Things 3 (2024), 1-25.
DOI
[28] Semertzis, I., Rajkumar, V. S., Ştefanov, A., Fransen, F., Palensky, P.: Quantitative risk assessment of cyber-attacks on cyber-physical systems using attack graphs. In: 10th IEEE Workshop on Modelling and Simulation of Cyber-Physical Energy Systems (MSCPES), IEEE 2022, pp. 1-6.
[29] Shen, Y., Lin, L.:
Adaptive output feedback stabilization for nonlinear systems with unknown polynomial-of-output growth rate and sensor uncertainty. Kybernetika 58 (2022), 4, 637-660.
DOI |
MR 4521860
[30] Shikhaliyev, R.:
Cybersecurity risks management of industrial control systems: A review. Probl. Inf. Technol. 15 (2024), 1, 37-43.
DOI
[31] Suh-Lee, C., Jo, J.: Quantifying security risk by measuring network risk conditions. In: IEEE/ACIS 14thInternational Conference on Computer and Information Science (ICIS), IEEE 2015, pp. 9-14.
[32] Wang, Z., Zhai, C., Zhang, H., Xiao, G., Chen, G., Xu, Y.:
Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances. Kybernetika 58 (2022), 2, 218-236.
DOI
[33] Xiao, F., McCalley, J. D.:
Power system risk assessment and control in a multobjective framework. IEEE Trans. Power Syst. 24 (2009), 1, 78-85.
DOI
[34] Zhang, Q., Zhou, C., Tian, Y. C., Xiong, N., Qin, Y., Hu, B.:
A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Ind. Inf. 14 (2018), 6, 2497-2506.
DOI