Previous |  Up |  Next

Article

Title: Conforming simplicial partitions of product-decomposed polytopes (English)
Author: Korotov, Sergey
Author: Vatne, Jon Eivind
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: We propose some approaches for the generation of conforming simplicial partitions with various regularity properties for polytopic domains that are products or a union of products, thus generalizing our earlier results. The techniques presented can be used for finite element simulations of higher-dimensional problems. (English)
Keyword: conforming simplicial partition
Keyword: product polytope
Keyword: red refinement
Keyword: finite element method
MSC: 65N30
MSC: 65N50
DOI: 10.21136/AM.2024.0163-24
.
Date available: 2025-03-07T09:23:48Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152881
.
Reference: [1] Apel, T., Düvelmeyer, N.: Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria.Computing 71 (2003), 293-304. Zbl 1037.65125, MR 2027214, 10.1007/s00607-003-0031-5
Reference: [2] Bey, J.: Simplicial grid refinement: On Freudenthal's algorithm and the optimal number of congruence classes.Numer. Math. 85 (2000), 1-29. Zbl 0949.65128, MR 1751367, 10.1007/s002110050475
Reference: [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [4] Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit.Ann. Math. (2) 43 (1942), 580-582 German. Zbl 0060.40701, MR 0007105, 10.2307/1968813
Reference: [5] Hacon, D., Tomei, C.: Tetrahedral decompositions of hexahedral meshes.Eur. J. Comb. 10 (1989), 435-443. Zbl 0723.05040, MR 1014551, 10.1016/S0195-6698(89)80017-4
Reference: [6] Khademi, A., Korotov, S., Vatne, J. E.: On the generalization of the Synge-Křížek maximum angle condition for $d$-simplices.J. Comput. Appl. Math. 358 (2019), 29-33. Zbl 1426.65177, MR 3926696, 10.1016/j.cam.2019.03.003
Reference: [7] Khademi, A., Korotov, S., Vatne, J. E.: On mesh regularity conditions for simplicial finite elements.Numerical Mathematics and Advanced Applications. ENUMATH 2019 Lecture Notes in Computational Science and Engineering 139. Springer, Cham (2021), 633-640. Zbl 1475.65192, MR 4266542, 10.1007/978-3-030-55874-1_62
Reference: [8] Korotov, S., Křížek, M.: On conforming tetrahedralizations of prismatic partitions.Differential and Difference Equations with Applications Springer Proceedings in Mathematics & Statistics 47. Springer, New York (2013), 63-68. Zbl 1317.65063, MR 3110255, 10.1007/978-1-4614-7333-6_5
Reference: [9] Korotov, S., Vatne, J. E.: Preserved structure constants for red refinements of product elements.Numerical Geometry, Grid Generation and Scientific Computing Lecture Notes in Computational Science Engineering 143. Springer, Cham (2021), 241-248. Zbl 1496.74120, MR 4391448, 10.1007/978-3-030-76798-3_15
Reference: [10] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126, 10.21136/AM.1991.104461
Reference: [11] Kuhn, H. W.: Some combinatorial lemmas in topology.IBM J. Res. Dev. 4 (1960), 518-524. Zbl 0109.15603, MR 0124038, 10.1147/rd.45.0518
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo