[1] Bavestrello, H., Avery, P., Farhat, C.:
Incorporation of linear multipoint constraints in domain-decomposition-based iterative solvers. II. Blending FETI-DP and mortar methods and assembling floating substructures. Comput. Methods Appl. Mech. Eng. 196 (2007), 1347-1368.
DOI 10.1016/j.cma.2006.03.024 |
MR 2277021 |
Zbl 1173.74399
[2] Cvetković, D. M., Doob, M., Sachs, H.:
Spectra of Graphs: Theory and Application. Pure and Applied Mathematics (Academic Press) 87. Academic Press, New York (1980).
MR 0572262 |
Zbl 1540.05001
[3] Dostál, Z., Brzobohatý, T., Horák, D., Kružík, J., Vlach, O.:
Scalable hybrid TFETI-DP methods for large boundary variational inequalities. Domain Decomposition Methods in Science and Engineering XXVI Lecture Notes in Computational Science and Engineering 145. Springer, Cham (2022), 29-40.
DOI 10.1007/978-3-030-95025-5_3 |
MR 4703833 |
Zbl 07936273
[4] Dostál, Z., Brzobohatý, T., Vlach, O., Meca, O., Sadowská, M.:
Hybrid TFETI domain decomposition with the clusters joined by faces' rigid modes for solving huge 3D elastic problems. Comput. Mech. 71 (2023), 333-347.
DOI 10.1007/s00466-022-02242-2 |
MR 4539373 |
Zbl 1514.74084
[6] Dostál, Z., Horák, D., Kučera, R.:
Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22 (2006), 1155-1162.
DOI 10.1002/cnm.881 |
MR 2282408 |
Zbl 1107.65104
[9] Farhat, C., Mandel, J., Roux, F.-X.:
Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Eng. 115 (1994), 365-385.
DOI 10.1016/0045-7825(94)90068-X |
MR 1285024
[11] Farhat, C., Roux, F.-X.:
An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13 (1992), 379-396.
DOI 10.1137/0913020 |
MR 1145192 |
Zbl 0746.65086
[15] Fragakis, Y., Papadrakakis, M.:
The mosaic of high performance domain decomposition methods for structural mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods. Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830.
DOI 10.1016/S0045-7825(03)00374-8 |
Zbl 1054.74069
[16] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013).
MR 3024913 |
Zbl 1268.65037
[19] Miyamura, T., Yoshimura, S.:
Balancing domain decomposition method for large-scale analysis of an assembly structure having millions of multipoint constraints. Comput. Methods Appl. Mech. Eng. 405 (2023), Article ID 115846, 29 pages.
DOI 10.1016/j.cma.2022.115846 |
MR 4530714 |
Zbl 1539.74461
[20] Mohar, B.:
The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications. Vol. 2 John Wiley & Sons, New York (1991), 871-898.
MR 1170831 |
Zbl 0840.05059
[22] Park, K. C., Felippa, C. A., Gumaste, U. A.:
A localized version of the method of Lagrange multipliers and its applications. Comput. Mech. 24 (2000), 476-490.
DOI 10.1007/s004660050007 |
Zbl 0961.74077