Title: | Vanishing viscosity of one-dimensional isentropic Navier-Stokes equations with density dependent viscous coefficient (English) |
Author: | Cui, Meiying |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 2 |
Year: | 2025 |
Pages: | 397-420 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study the vanishing viscosity of isentropic compressible Navier-Stokes equations with density dependent viscous coefficient in the presence of shock wave. Given a shock wave to the corresponding Euler equations, we can construct a sequence of solutions to one-dimensional compressible isentropic Navier-Stokes equations which converge to the shock wave as the viscosity tends to zero. The proof is given by an elementary energy method. (English) |
Keyword: | vanishing viscosity limit |
Keyword: | compressible isentropic Navier-Stokes equation |
Keyword: | Euler equation |
Keyword: | shock wave |
MSC: | 35Q30 |
MSC: | 76N06 |
DOI: | 10.21136/CMJ.2025.0297-22 |
. | |
Date available: | 2025-05-20T11:42:13Z |
Last updated: | 2025-05-26 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152948 |
. | |
Reference: | [1] Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model.Commun. Math. Phys. 238 (2003), 211-223. Zbl 1037.76012, MR 1989675, 10.1007/s00220-003-0859-8 |
Reference: | [2] Bresch, D., Desjardins, B., Gérard-Varet, D.: On compressible Navier-Stokes equations with density dependent viscosities in bounded domains.J. Math. Pures Appl. (9) 87 (2007), 227-235. Zbl 1121.35093, MR 2296806, 10.1016/j.matpur.2006.10.010 |
Reference: | [3] Bresch, D., Desjardins, B., Lin, C-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water system.Commun. Partial Differ. Equations 28 (2003), 843-868. Zbl 1106.76436, MR 1978317, 10.1081/PDE-120020499 |
Reference: | [4] Chen, G., Perepelitsa, M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow.Commun. Pure Appl. Math. 63 (2010), 1469-1504. Zbl 1205.35188, MR 2683391, 10.1002/cpa.20332 |
Reference: | [5] Fang, D., Zhang, T.: Compressible Navier-Stokes equations with vacuum state in the case of general pressure law.Math. Methods Appl. Sci. 29 (2006), 1081-1106. Zbl 1184.35259, MR 2237707, 10.1002/mma.708 |
Reference: | [6] Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid.Indiana Univ. Math. J. 53 (2004), 1705-1738. Zbl 1087.35078, MR 2106342, 10.1512/iumj.2004.53.2510 |
Reference: | [7] Guo, Z., Jiu, Q., Xin, Z.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients.SIAM J. Math. Anal. 39 (2008), 1402-1427. Zbl 1151.35071, MR 2377283, 10.1137/070680333 |
Reference: | [8] Hoff, D.: Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data.Trans. Am. Math. Soc. 303 (1987), 169-181. Zbl 0656.76064, MR 0896014, 10.1090/S0002-9947-1987-0896014-6 |
Reference: | [9] Hoff, D., Liu, T.-P.: The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data.Indiana Univ. Math. J. 38 (1989), 861-915. Zbl 0674.76047, MR 1029681, 10.1512/iumj.1989.38.38041 |
Reference: | [10] Huang, F., Li, M., Wang, Y.: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations.SIAM J. Math. Anal. 44 (2012), 1742-1759. Zbl 1247.35093, MR 2982730, 10.1137/100814305 |
Reference: | [11] Huang, F., Wang, Y., Wang, Y., Yang, T.: Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks.Sci. China, Math. 58 (2015), 653-672. Zbl 1360.35178, MR 3319304, 10.1007/s11425-014-4962-4 |
Reference: | [12] Huang, F., Wang, Y., Yang, T.: Fluid dynamic limit to the Riemann solutions of Euler equations. I. Superposition of rarefaction waves and contact discontinuity.Kinet. Relat. Models 3 (2010), 685-728. Zbl 1209.35098, MR 2735911, 10.3934/krm.2010.3.685 |
Reference: | [13] Huang, F., Wang, Y., Yang, T.: Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to Riemann problem.Arch. Ration. Mech. Anal. 203 (2012), 379-413. Zbl 1286.76125, MR 2885565, 10.1007/s00205-011-0450-y |
Reference: | [14] Jiang, S., Ni, G., Sun, W.: Vanishing viscosity limit to rarefaction waves for the Navier- Stokes equations of one-dimensional compressible heat-conducting fluids.SIAM J. Math. Anal. 38 (2006), 368-384. Zbl 1107.76063, MR 2237152, 10.1137/050626478 |
Reference: | [15] Jiang, S., Xin, Z., Zhang, P.: Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity.Methods Appl. Anal. 12 (2005), 239-252. Zbl 1110.35058, MR 2254008, 10.4310/MAA.2005.v12.n3.a2 |
Reference: | [16] Jiang, S., Zhang, P.: Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids.J. Math. Pures Appl. (9) 82 (2003), 949-973. Zbl 1109.35088, MR 2005201, 10.1016/S0021-7824(03)00015-1 |
Reference: | [17] Jiu, Q., Wang, Y., Xin, Z.: Stability of rarefaction waves to the 1D compressible Navier- Stokes equations with density-dependent viscosity.Commun. Partial Differ. Equations 36 (2011), 602-634. Zbl 1228.35138, MR 2763325, 10.1080/03605302.2010.516785 |
Reference: | [18] Jiu, Q., Wang, Y., Xin, Z.: Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity.SIAM J. Math. Anal. 45 (2013), 3194-3228. Zbl 1293.35170, MR 3116645, 10.1137/120879919 |
Reference: | [19] Kazhikhov, A. V., Shelukhin, V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas.J. Appl. Math. Mech. 41 (1977), 273-282. Zbl 0393.76043, MR 0468593, 10.1016/0021-8928(77)90011-9 |
Reference: | [20] Li, H.-L., Li, J., Xin, Z.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations.Commun. Math. Phys. 281 (2008), 401-444. Zbl 1173.35099, MR 2410901, 10.1007/s00220-008-0495-4 |
Reference: | [21] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models.Oxford Lecture Series in Mathematics and its Applications 10. Clarendon Press, New York (1998). Zbl 0908.76004, MR 1637634 |
Reference: | [22] Liu, T.-P., Xin, Z., Yang, T.: Vacuum states for compressible flow.Discrete Contin. Dyn. Syst. 4 (1998), 1-32. Zbl 0970.76084, MR 1485360, 10.3934/dcds.1998.4.1 |
Reference: | [23] Ma, S.: Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations.J. Differ. Equations 248 (2010), 95-110. Zbl 1179.35220, MR 2557896, 10.1016/j.jde.2009.08.016 |
Reference: | [24] Matsumura, A., Mei, M.: Convergence to travelling fronts of solutions of the $p$-system with viscosity in the presence of a boundary.Arch. Ration. Mech. Anal. 146 (1999), 1-22. Zbl 0957.76072, MR 1682659, 10.1007/s002050050134 |
Reference: | [25] Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids.Proc. Japan Acad., Ser. A 55 (1979), 337-342. Zbl 0447.76053, MR 0555060, 10.3792/pjaa.55.337 |
Reference: | [26] Matsumura, A., Wang, Y.: Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity.Methods Appl. Anal. 17 (2010), 279-290. Zbl 1242.76059, MR 2785875, 10.4310/MAA.2010.v17.n3.a3 |
Reference: | [27] Mellet, A., Vasseur, A.: On the barotropic compressible Navier-Stokes equations.Commun. Partial Differ. Equations 32 (2007), 431-452. Zbl 1149.35070, MR 2304156, 10.1080/03605300600857079 |
Reference: | [28] Okada, M., Matušů-Nečasová, Š., Makino, T.: Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity.Ann. Univ. Ferrara, Nuova Ser., Sez. VII 48 (2002), 1-20. Zbl 1027.76042, MR 1980822, 10.1007/BF02824736 |
Reference: | [29] Serre, D.: Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible.C. R. Acad. Sci., Paris, Sér. I 303 (1986), 639-642 French. Zbl 0597.76067, MR 0867555 |
Reference: | [30] Smoller, J.: Shock Waves and Reaction-Diffusion Equations.Grundlehren der Mathematischen Wissenschaften 258. Springer, New York (1994). Zbl 0807.35002, MR 1301779, 10.1007/978-1-4612-0873-0 |
Reference: | [31] Vong, S.-W., Yang, T., Zhu, C.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. II.J. Differ. Equations 192 (2003), 475-501. Zbl 1025.35020, MR 1990849, 10.1016/S0022-0396(03)00060-3 |
Reference: | [32] Wang, Y.: Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock.Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 727-748. Zbl 1177.76092, MR 2462917, 10.1016/S0252-9602(08)60074-0 |
Reference: | [33] Xin, Z.: Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases.Commun. Pure Appl. Math. 46 (1993), 621-665. Zbl 0804.35108, MR 1213990, 10.1002/cpa.3160460502 |
Reference: | [34] Xin, Z., Zeng, H.: Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations.J. Differ. Equations 249 (2010), 827-871. Zbl 1203.35184, MR 2652155, 10.1016/j.jde.2010.03.011 |
Reference: | [35] Yang, T., Yao, Z., Zhu, C.: Compressible Navier-Stokes equations with density-dependent viscosity and vacuum.Commun. Partial Differ. Equations 26 (2001), 965-981. Zbl 0982.35084, MR 1843291, 10.1081/PDE-100002385 |
Reference: | [36] Yang, T., Zhao, H.: A vacuum problem for the one-dimensional compressible Navier- Stokes equations with density-dependent viscosity.J. Differ. Equations 184 (2002), 163-184. Zbl 1003.76073, MR 1929151, 10.1006/jdeq.2001.4140 |
Reference: | [37] Yang, T., Zhu, C.: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum.Commun. Math. Phys. 230 (2002), 329-363. Zbl 1045.76038, MR 1936794, 10.1007/s00220-002-0703-6 |
Reference: | [38] Zhang, Y., Pan, R., Tan, Z.: Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations.Sci. China, Math. 56 (2013), 2205-2232. Zbl 1292.35247, MR 3123567, 10.1007/s11425-013-4690-1 |
. |
Fulltext not available (moving wall 24 months)