Previous |  Up |  Next

Article

Title: Projectively coresolved Gorenstein flat modules over trivial ring extensions (English)
Author: Wang, Zhanping
Author: Jin, Yuanhui
Author: He, Jianyuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 445-460
Summary lang: English
.
Category: math
.
Summary: Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$. Sufficient and necessary conditions are established for projectively coresolved Gorenstein flat (PGF, for short) modules over $R\ltimes M$. More pecisely, it is proved that $(X, \alpha )$ is a PGF left \hbox {$R\ltimes M$-module} if and only if ${\rm Coker}(\alpha )$ is a PGF left $R$-module and the sequence $M\otimes _{R}M\otimes _{R}X \overset {M\otimes \alpha } \to \longrightarrow M\otimes _{R}X \overset {\alpha } \to \longrightarrow X$ is exact under some assumptions on $M$. As applications, it is characterized PGF modules over Morita rings with zero bimodule homomorphisms. (English)
Keyword: PGF module
Keyword: trivial ring extension
Keyword: Morita ring
MSC: 16D40
MSC: 16D50
MSC: 16E05
DOI: 10.21136/CMJ.2025.0505-23
.
Date available: 2025-05-20T11:43:58Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152952
.
Reference: [1] Asefa, D.: Ding projective modules over Morita context rings.Commun. Algebra 52 (2024), 79-87. Zbl 07790874, MR 4685755, 10.1080/00927872.2023.2233032
Reference: [2] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94. AMS, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [3] Bass, H.: The Morita Theorems.University of Oregon, Eugene (1969).
Reference: [4] Cui, J., Rong, S., Zhang, P.: Cotorsion pairs and model structures on Morita rings.J. Algebra 661 (2025), 1-81. Zbl 07938126, MR 4788649, 10.1016/j.jalgebra.2024.08.001
Reference: [5] Dumitrescu, T., Mahdou, N., Zahir, Y.: Radical factorization for trivial extensions and amalgamated duplication rings.J. Algebra Appl. 20 (2021), Article ID 2150025, 10 pages. Zbl 1460.13006, MR 4221776, 10.1142/S0219498821500250
Reference: [6] Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B.: Gorenstein conditions over triangular matrix rings.J. Pure Appl. Algebra 218 (2014), 1544-1554. Zbl 1312.16023, MR 3175039, 10.1016/j.jpaa.2013.12.006
Reference: [7] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [8] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [9] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules.J. Nanjing Univ., Math. Biq. 10 (1993), 1-9. Zbl 0794.16001, MR 1248299
Reference: [10] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory.Lecture Notes in Mathematics 456. Springer, Berlin (1975). Zbl 0303.18006, MR 0389981, 10.1007/BFb0065404
Reference: [11] Gao, N., Ma, J., Liu, X.-Y.: RSS equivalences over a class of Morita rings.J. Algebra 573 (2021), 336-363. Zbl 1471.16006, MR 4203536, 10.1016/j.jalgebra.2020.12.037
Reference: [12] Green, E. L.: On the representation theory of rings in matrix form.Pac. J. Math. 100 (1982), 123-138. Zbl 0502.16016, MR 0661444, 10.2140/pjm.1982.100.123
Reference: [13] Guo, Q., Xi, C.: Gorenstein projective modules over rings of Morita contexts.Sci. China, Math. 67 (2024), 2453-2484. Zbl 07936927, MR 4803497, 10.1007/s11425-022-2206-8
Reference: [14] Holm, H.: Gorenstein Homological Algebra: Ph. D. Thesis.University of Copenhagen, Copenhagen (2004). MR 2038564
Reference: [15] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [16] Krylov, P., Tuganbaev, A.: Formal Matrices.Algebra and Applications 23. Springer, Cham (2017). Zbl 1367.16001, MR 3642603, 10.1007/978-3-319-53907-2
Reference: [17] Mao, L.: Cotorsion pairs and approximation classes over formal triangular matrix rings.J. Pure Appl. Algebra 224 (2020), Article ID 106271, 21 pages. Zbl 1479.16003, MR 4048527, 10.1016/j.jpaa.2019.106271
Reference: [18] Mao, L.: Gorenstein flat modules and dimensions over formal triangular matrix rings.J. Pure Appl. Algebra 224 (2020), Article ID 106207, 10 pages. Zbl 1453.16001, MR 4021921, 10.1016/j.jpaa.2019.106207
Reference: [19] Mao, L.: Homological dimensions of special modules over formal triangular matrix rings.J. Algebra Appl. 21 (2022), Article ID 2250146, 14 pages. Zbl 1514.16011, MR 4448429, 10.1142/S0219498822501468
Reference: [20] Mao, L.: Ding projective and Ding injective modules over trivial ring extensions.Czech. Math. J. 73 (2023), 903-919. Zbl 07729544, MR 4632864, 10.21136/CMJ.2023.0351-22
Reference: [21] Mao, L.: Gorenstein flat modules over some Morita context rings.J. Algebra Appl. 23 (2024), Article ID 2450096, 16 pages. Zbl 07797226, MR 4692618, 10.1142/S0219498824500968
Reference: [22] Mao, L.: Gorenstein projective, injective and flat modules over trivial ring extensions.J. Algebra Appl. 24 (2025), Article ID 2550030. Zbl 7960960, MR 4834025, 10.1142/S0219498825500306
Reference: [23] Minamoto, H., Yamaura, K.: Homological dimension formulas for trivial extension algebras.J. Pure Appl. Algebra 224 (2020), Article ID 106344, 30 pages. Zbl 1436.16010, MR 4074582, 10.1016/j.jpaa.2020.106344
Reference: [24] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition.Sci. Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83-142. Zbl 0080.25702, MR 0096700
Reference: [25] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). Zbl 0123.03402, MR 0155856
Reference: [26] Palmér, I., Roos, J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings.J. Algebra 27 (1973), 380-413. Zbl 0269.16019, MR 0376766, 10.1016/0021-8693(73)90113-0
Reference: [27] Reiten, I.: Trivial Extensions and Gorenstein Rings: Ph. D. Thesis.University of Illinois, Urbana (1971). MR 2621542
Reference: [28] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85. Academic Press, New York (1979). Zbl 0441.18018, MR 0538169
Reference: [29] Šaroch, J., Šťovíček, J.: Singular compactness and definability for $\Sigma$-cotorsion and Gorenstein modules.Sel. Math., New Ser. 26 (2020), Article ID 23, 40 pages. Zbl 1444.16010, MR 4076700, 10.1007/s00029-020-0543-2
Reference: [30] Zhang, P.: Gorenstein-projective modules and symmetric recollements.J. Algebra 388 (2013), 65-80. Zbl 1351.16012, MR 3061678, 10.1016/j.jalgebra.2013.05.008
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo