Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
unit nil-clean ring; clean ring; $p$-group; locally finite group; singular clean ring; UU ring; nil-clean ring
Summary:
We study the unit nil-cleanness of group rings when $R$ is commutative or arbitrary. Furthermore, we investigate some properties of singular clean group rings. A necessary and sufficient condition for the group ring $RG$ to be singular clean is provided.
References:
[1] Abdolyousefi, M. S., Ashrafi, N., Chen, H.: On unit nil-clean rings. Mediterr. J. Math. 16 (2019), Article ID 100, 9 pages. DOI 10.1007/s00009-019-1369-z | MR 3973269 | Zbl 1412.16029
[2] Amini, A., Amini, B., Nejadzadeh, A., Sharif, H.: Singular clean rings. J. Korean Math. Soc. 55 (2018), 1143-1156. DOI 10.4134/JKMS.j170615 | MR 3849355 | Zbl 1396.16032
[3] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. MR 3408811 | Zbl 1349.16059
[4] Chen, J., Li, Y., Zhou, Y.: Morphic group rings. J. Pure Appl. Algebra 205 (2006), 621-639. DOI 10.1016/j.jpaa.2005.07.021 | MR 2210221 | Zbl 1094.16018
[5] Chen, J., Nicholson, W. K., Zhou, Y.: Group rings in which every element is uniquely the sum of a unit and an idempotent. J. Algebra 306 (2006), 453-460. DOI 10.1016/j.jalgebra.2006.08.012 | MR 2271346 | Zbl 1110.16025
[6] Chen, J., Zhou, Y.: Strongly clean power series rings. Proc. Edinb. Math. Soc., II. Ser. 50 (2007), 73-85. DOI 10.1017/S0013091505000404 | MR 2294005 | Zbl 1128.16030
[7] Connell, I. G.: On the group ring. Can. J. Math. 15 (1963), 650-685. DOI 10.4153/CJM-1963-067-0 | MR 0153705 | Zbl 0121.03502
[8] Davis, K. S., Webb, W. A.: Lucas' theorem for prime powers. Eur. J. Comb. 11 (1990), 229-233. DOI 10.1016/S0195-6698(13)80122-9 | MR 1059553 | Zbl 0704.11002
[9] Dickson, L. E.: History of the Theory of Numbers. Vol. 1. Chelsea, New York (1952). MR 0245500
[10] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[11] Fine, N. J.: Binomial coefficients modulo a prime. Am. Math. Mon. 54 (1947), 589-592. DOI 10.2307/2304500 | MR 0023257 | Zbl 0030.11102
[12] Guo, Y., Guo, X.: Semigroup rings which are strongly nil-clean. (to appear) in J. Algebra Appl. DOI 10.1142/S0219498825502457
[13] Ilić-Georgijević, E., Şahinkaya, S.: On graded nil clean rings. Commun. Algebra 46 (2018), 4079-4089. DOI 10.1080/00927872.2018.1435791 | MR 3820617 | Zbl 1430.16042
[14] Karpilovsky, G.: The Jacobson radical of commutative group rings. Arch. Math. 39 (1982), 428-430. DOI 10.1007/BF01899543 | MR 0688694 | Zbl 0487.16012
[15] Kelarev, A. V.: Ring Constructions and Applications. Series in Algebra 9. World Scientific, Singapore (2002). DOI 10.1142/4807 | MR 1875643 | Zbl 0999.16036
[16] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (2001). DOI 10.1007/978-1-4419-8616-0 | MR 1838439 | Zbl 0980.16001
[17] McGovern, W. Wm., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. DOI 10.1142/S0219498815500942 | MR 3338090 | Zbl 1325.16024
[18] Nicholson, W. K.: Lifting idempotents and exchange rings. Tran. Am. Math. Soc. 229 (1977), 269-278. DOI 10.1090/S0002-9947-1977-0439876-2 | MR 0439876 | Zbl 0352.16006
[19] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg. Math. J. 46 (2004), 227-236. DOI 10.1017/S0017089504001727 | MR 2062606 | Zbl 1057.16007
[20] Passman, D. S.: The Algebraic Structure of Group Rings. Dover, New York (2011). MR 0470211
[21] Sabet, S. A. S., Farmani, M., Karami, M.: $\pi$-clean and strongly $\pi$-clean rings. Measurement 109 (2017), 74-78. DOI 10.1016/j.measurement.2017.05.037
[22] Sahinkaya, S., Tang, G., Zhou, Y.: Nil-clean group rings. J. Algebra Appl. 16 (2017), Article ID 1750135, 7 pages. DOI 10.1142/S0219498817501353 | MR 3660418 | Zbl 1382.16021
[23] Wang, X., You, H.: Cleanness of the group ring of an Abelian $p$-group over a commutative ring. Algebra Colloq. 19 (2012), 539-544. DOI 10.1142/S1005386712000405 | MR 2999263 | Zbl 1259.16026
[24] Zhou, Y.: On clean group rings. Advances in Ring Theory Trends in Mathematics. Birkhäuser, Basel (2010), 335-345. DOI 10.1007/978-3-0346-0286-0_22 | MR 2664681 | Zbl 1205.16020
Partner of
EuDML logo