Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
associated prime; bigraded module; cohomological dimension; finiteness dimension; maximal depth; local cohomology
Summary:
Let $\Bbbk $ be a field, and let $S=\Bbbk [x_1, \dots , x_m, y_1, \dots , y_n]$ denote a standard bigraded polynomial ring over $\Bbbk $. Consider $M$, a finitely generated bigraded $S$-module, and set $Q=\langle y_1, \dots , y_n \rangle $. Assume that there exists $\frak p \in {\rm Ass}_S M$ such that ${\rm cd}(Q, S/\frak p)=j>0$. We demonstrate that ${\rm H}^j_{Q}(M)$ is not finitely generated. Furthermore, we explore a more general version of this result.
References:
[1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 136. Cambridge University Press, Cambridge (2013). DOI 10.1017/CBO9780511629204 | MR 3014449 | Zbl 1263.13014
[2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[3] Capani, A., Niesi, G., Robbiano, L.: CoCoA: A system for Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it
[4] Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module. J. Commut. Algebra 5 (2013), 63-92. DOI 10.1216/JCA-2013-5-1-63 | MR 3084122 | Zbl 1275.13014
[5] Dibaei, M. T., Vahidi, A.: Torsion functors of local cohomology modules. Algebr. Represent. Theory 14 (2011), 79-85. DOI 10.1007/s10468-009-9177-y | MR 2763293 | Zbl 1213.13035
[6] Herzog, J., Popescu, D., Vladoiu, M.: Stanley depth and size of a monomial ideal. Proc. Am. Math. Soc. 140 (2012), 493-504. DOI 10.1090/S0002-9939-2011-11160-2 | MR 2846317 | Zbl 1234.13013
[7] Jahangiri, M., Rahimi, A.: Relative Cohen-Macaulayness and relative unmixedness of bigraded modules. J. Commut. Algebra 4 (2012), 551-575. DOI 10.1216/JCA-2012-4-4-551 | MR 3053452 | Zbl 1266.13011
[8] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). DOI 10.1017/CBO9781139171762 | MR 1011461 | Zbl 0666.13002
[9] Pourghobadian, P., Divaani-Aazar, K., Rahimi, A.: Relative homological rings and modules. (to appear) in Rocky Mt. J. Math.
[10] Rahimi, A.: Relative Cohen-Macaulayness of bigraded modules. J. Algebra 323 (2010), 1745-1757. DOI 10.1016/j.jalgebra.2009.11.026 | MR 2588136 | Zbl 1184.13053
[11] Rahimi, A.: Sequentially Cohen-Macaulayness of bigraded modules. Rocky Mt. J. Math. 47 (2017), 621-635. DOI 10.1216/RMJ-2017-47-2-621 | MR 3635377 | Zbl 1401.13032
[12] Rahimi, A.: Maximal depth property of bigraded modules. Rend. Circ. Mat. Palermo (2) 70 (2021), 947-958. DOI 10.1007/s12215-020-00538-x | MR 4286007 | Zbl 1473.13007
[13] Villarreal, R. H.: Monomial Algebras. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). DOI 10.1201/b18224 | MR 3362802 | Zbl 1325.13004
Partner of
EuDML logo