Previous |  Up |  Next

Article

Title: On the duality of Dunford-Pettis operators on Banach lattices (English)
Author: Aqzzouz, Belmesnaoui
Author: Elbour, Aziz
Author: Aboutafail, Othman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 743-751
Summary lang: English
.
Category: math
.
Summary: We establish sufficient conditions for the duality of regular Dunford-Pettis operators on Banach lattices and necessary conditions for the duality condition ``if the adjoint of a (positive) operator is Dunford-Pettis, then the operator itself is''. In particular, we show that if each operator $T\colon E\rightarrow F$ from a Banach lattice $E$ with an order continuous norm to another Banach lattice $F$ is Dunford-Pettis whenever its adjoint $T^{\prime }\colon F^{\prime }\rightarrow E^{\prime }$ is Dunford-Pettis, then $E$ has the Schur property or $F$ is a KB-space. As consequences, we deduce a characterization of the Schur property (and KB-spaces). (English)
Keyword: Dunford-Pettis operator
Keyword: order continuous norm
Keyword: positive Schur property
Keyword: KB-space
MSC: 46A40
MSC: 46B40
MSC: 46B42
DOI: 10.21136/CMJ.2024.0523-24
.
Date available: 2025-05-20T11:52:34Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152968
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Berlin (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4
Reference: [2] Aqzzouz, B., Bourass, K., Elbour, A.: Some generalizations on positive Dunford-Pettis operators.Result. Math. 54 (2009), 207-218. Zbl 1191.47051, MR 2534444, 10.1007/s00025-009-0372-2
Reference: [3] Aqzzouz, B., Elbour, A., Wickstead, A. W.: Positive almost Dunford-Pettis operators and their duality.Positivity 15 (2011), 185-197. Zbl 1232.46019, MR 2803812, 10.1007/s11117-010-0050-3
Reference: [4] Aqzzouz, B., Nouira, R., Zraoula, L.: On the duality problem of positive Dunford-Pettis operators on Banach lattices.Rend. Circ. Mat. Palermo (2) 57 (2008), 287-294. Zbl 1166.47036, MR 2452672, 10.1007/s12215-008-0021-8
Reference: [5] Kalton, N. J., Saab, P.: Ideal properties of regular operators between Banach lattices.Ill. J. Math. 29 (1985), 382-400. Zbl 0568.47030, MR 0786728, 10.1215/ijm/1256045630
Reference: [6] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093, 10.1007/978-3-642-76724-1
Reference: [7] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems.Math. Proc. Camb. Philos. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752
Reference: [8] Wnuk, W.: Banach spaces with properties of the Schur type -- A survey.Conf. Semin. Mat. Univ. Bari 249 (1993), 25 pages. Zbl 0812.46010, MR 1230964
Reference: [9] Zaanen, A. C.: Riesz Spaces II.North-Holland Mathematical Library 30. North-Holland, Amsterdam (1983). Zbl 0519.46001, MR 0704021, 10.1016/s0924-6509(08)x7015-1
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo