Previous |  Up |  Next

Article

Title: On common index divisors and monogenity of septic number fields defined by trinomials of type $x^7+ax^5+b$ (English)
Author: Ben Yakkou, Hamid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 2
Year: 2025
Pages: 245-262
Summary lang: English
.
Category: math
.
Summary: Let $K $ be a septic number field generated by a root $\theta $ of an irreducible polynomial $ F(x)= x^7+ax^5+b \in \mathbb Z[x]$. In this paper, we explicitly characterize the index $i(K)$ of $K$. More precisely, for all $a$ and $b$, we show that $i(K) \in \{1, 2\}$. Our results answer completely to Problem 22 of W. Narkiewicz's book (2004) for these families of number fields. In particular, we provide sufficient conditions for which $K$ is not monogenic. We illustrate our results by some computational examples. (English)
Keyword: monogenity
Keyword: power integral basis
Keyword: theorem of Ore
Keyword: prime ideal factorization
Keyword: common index divisor
Keyword: Newton polygon
MSC: 11R04
MSC: 11R16
MSC: 11R21
MSC: 11Y40
DOI: 10.21136/MB.2024.0148-23
.
Date available: 2025-05-20T11:56:34Z
Last updated: 2025-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152974
.
Reference: [1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse.Int. J. Algebra Comput. 26 (2016), 577-583. Zbl 1404.11124, MR 3506350, 10.1142/S0218196716500259
Reference: [2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields.Int. J. Number Theory 10 (2014), 2257-2265. Zbl 1316.11094, MR 3273484, 10.1142/S1793042114500778
Reference: [3] Yakkou, H. Ben: On nonmonogenic number fields defined by trinomials of type $x^n+ax^m+b$.Rocky Mt. J. Math. 53 (2023), 685-699. Zbl 07731139, MR 4617905, 10.1216/rmj.2023.53.685
Reference: [4] Yakkou, H. Ben, Boudine, B.: On the index of the octic number field defined by $x^8+ax+b$.Acta Math. Hung. 170 (2023), 585-607. Zbl 07745824, MR 4643856, 10.1007/s10474-023-01353-3
Reference: [5] Yakkou, H. Ben, Didi, J.: On monogenity of certain pure number fields of degrees $2^r\cdot3^k\cdot7^s$.Math. Bohem. 149 (2024), 167-183. Zbl 7893417, MR 4767006, 10.21136/MB.2023.0071-22
Reference: [6] Yakkou, H. Ben, Fadil, L. El: On monogenity of certain pure number fields defined by $x^{p^r}-m$.Int. J. Number Theory 17 (2021), 2235-2242. Zbl 1483.11236, MR 4322831, 10.1142/S1793042121500858
Reference: [7] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation.Acta Arith. 115 (2004), 85-96. Zbl 1064.11084, MR 2102808, 10.4064/aa115-1-7
Reference: [8] Cohen, H.: A Course in Computational Algebraic Number Theory.Graduate Texts in Mathematics 138. Springer, Berlin (1993). Zbl 0786.11071, MR 1228206, 10.1007/978-3-662-02945-9
Reference: [9] Davis, C. T., Spearman, B. K.: The index of quartic field defined by a trinomial $X^4+aX+b$.J. Algebra Appl. 17 (2018), Article ID 1850197, 18 pages. Zbl 1437.11149, MR 3866770, 10.1142/S0219498818501979
Reference: [10] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen.Abh. König. Gesell. Wiss. Gött. 23 (1878), 202-232 German.
Reference: [11] Engstrom, H. T.: On the common index divisors of an algebraic field.Trans. Am. Math. Soc. 32 (1930), 223-237 \99999JFM99999 56.0885.04. MR 1501535, 10.2307/1989492
Reference: [12] Evertse, J.-H., Győry, K.: Unit Equations in Diophantine Number Theory.Cambridge Studies in Advanced Mathematics 146. Cambridge University Press, Cambridge (2015). Zbl 1339.11001, MR 3524535, 10.1017/CBO9781316160749
Reference: [13] Evertse, J.-H., Győry, K.: Discriminant Equations in Diophantine Number Theory.New Mathematical Monographs 32. Cambridge University Press, Cambridge (2017). Zbl 1361.11002, MR 3586280, 10.1017/CBO9781316160763
Reference: [14] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms.Birkhäuser, Cham (2019). Zbl 1465.11090, MR 3970246, 10.1007/978-3-030-23865-0
Reference: [15] Gaál, I., Győry, K.: Index form equations in quintic fields.Acta Arith. 89 (1999), 379-396. Zbl 0930.11091, MR 1703860, 10.4064/aa-89-4-379-396
Reference: [16] Gaál, I., Pethő, A., Pohst, M.: On the resolution of index form equations in quartic number fields.J. Symb. Comput. 16 (1993), 563-584. Zbl 0808.11023, MR 1279534, 10.1006/jsco.1993.1064
Reference: [17] Gaál, I., Schulte, N.: Computing all power integral bases of cubic fields.Math. Comput. 53 (1989), 689-696. Zbl 0677.10013, MR 0979943, 10.2307/2008731
Reference: [18] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory.Trans. Am. Math. Soc. 364 (2012), 361-416. Zbl 1252.11091, MR 2833586, 10.1090/S0002-9947-2011-05442-5
Reference: [19] Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields.J. Théor. Nombres Bordx. 23 (2021), 667-669. Zbl 1266.11131, MR 2861080, 10.5802/jtnb.782
Reference: [20] Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné.Acta Arith. 23 (1973), 419-426 French. Zbl 0269.12001, MR 0437489, 10.4064/aa-23-4-419-426
Reference: [21] Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné. III.Publ. Math. Debr. 23 (1976), 141-165 French. Zbl 0354.10041, MR 0437491, 10.5486/PMD.1976.23.1-2.23
Reference: [22] Győry, K.: On polynomials with integer coefficients and given discriminant. IV.Publ. Math. Debr. 25 (1978), 155-167. Zbl 0405.12003, MR 0485774, 10.5486/PMD.1978.25.1-2.20
Reference: [23] Győry, K.: Corps de nombres algébriques d'anneau d'entiers monogéne.Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979. Théorie des nombres. Fascicule 2: Exposés 22 à 33, Index cumulatif 1re à 20e années, 1959/1960 à 1978/1979 Secrétariat Mathématique, Paris (1980), Article ID 26, 7 pages French. Zbl 0433.12001, MR 0582432
Reference: [24] Győry, K.: On discriminants and indices of integers of an algebraic number field.J. Reine Angew. Math. 324 (1981), 114-126. Zbl 0446.12006, MR 0614518, 10.1515/crll.1981.324.114
Reference: [25] Győry, K.: Bounds for the solutions of decomposable form equations.Publ. Math. Debr. 52 (1998), 1-31. Zbl 0902.11015, MR 1603299, 10.5486/PMD.1998.1618
Reference: [26] Jakhar, A., Khanduja, S. K., Sangwan, N.: Characterization of primes dividing the index of a trinomial.Int. J. Number Theory 13 (2017), 2505-2514. Zbl 1431.11116, MR 3713088, 10.1142/S1793042117501391
Reference: [27] Jones, L., White, D.: Monogenic trinomials with non-squarefree discriminant.Int. J. Math. 32 (2021), Article ID 2150089, 21 pages. Zbl 1478.11125, MR 4361991, 10.1142/S0129167X21500890
Reference: [28] Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cubic field.Proc. Am. Math. Soc. 87 (1983), 579-585. Zbl 0514.12003, MR 0687621, 10.1090/S0002-9939-1983-0687621-6
Reference: [29] Montes, J., Nart, E.: On a theorem of Ore.J. Algebra 146 (1992), 318-334. Zbl 0762.11045, MR 1152908, 10.1016/0021-8693(92)90071-S
Reference: [30] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers.Springer Monographs in Mathematics. Springer, Berlin (2004). Zbl 1159.11039, MR 2078267, 10.1007/978-3-662-07001-7
Reference: [31] Nart, E.: On the index of a number field.Trans. Am. Math. Soc. 289 (1985), 171-183. Zbl 0563.12006, MR 0779058, 10.1090/S0002-9947-1985-0779058-2
Reference: [32] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper.Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. MR 1512440, 10.1007/BF01459087
Reference: [33] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields.Acta Arith. 153 (2012), 393-414. Zbl 1255.11052, MR 2925379, 10.4064/aa153-4-4
Reference: [34] Pethő, A., Ziegler, V.: On biquadratic fields that admit unit power integral basis.Acta Math. Hung. 133 (2011), 221-241. Zbl 1265.11097, MR 2846093, 10.1007/s10474-011-0103-5
Reference: [35] Żyliński, E. von: Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper.Math. Ann. 73 (1913), 273-274 German \99999JFM99999 44.0241.02. MR 1511731, 10.1007/BF01456716
.

Files

Files Size Format View
MathBohem_150-2025-2_5.pdf 317.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo