[2] Algarni, A., Almarashi, A. M., Abd-Elmougod, G. A., Abo-Eleneen, Z. A.:
Two compound Rayleigh lifetime distributions in analyses the jointly type-II censoring samples: DSGT2018. J. Math. Chem. 58 (2020), 950-966.
DOI 10.1007/s10910-019-01058-5 |
MR 4087456 |
Zbl 1439.62212
[4] Al-Zahrani, B., Ali, M. A.:
Recurrence relations for moments of multiply type-II censored order statistics from Lindley distribution with applications to inference. Stat. Optim. Inf. Comput. 2 (2014), 147-160.
DOI 10.19139/soic.v2i2.55 |
MR 3351377
[10] Chalabi, I.:
High-resolution sea clutter modelling using compound inverted exponentiated Rayleigh distribution. Remote Sensing Lett. 14 (2023), 433-441.
DOI 10.1080/2150704X.2023.2215894
[11] Chiodo, E., Fantauzzi, M., Mazzanti, G.:
The compound inverse Rayleigh as an extreme wind speed distribution and its Bayes estimation. Energies 15 (2022), Article ID 861, 26 pages.
DOI 10.3390/en15030861
[15] Diamoutene, A., Noureddine, F., Kamsu-Foguem, B., Barro, D.:
Reliability analysis with proportional hazard model in aeronautics. Int. J. Aeronaut. Space Sci. 22 (2021), 1222-1234.
DOI 10.1007/s42405-021-00371-1
[17] Fatima, K., Jan, U., Ahmad, S. P.:
Statistical properties of Rayleigh Lomax distribution with applications in survival analysis. J. Data Sci. 16 (2018), 531-548.
DOI 10.6339/JDS.201807_16(3).0005
[18] Feroze, N., Aslam, M., Khan, I. H., Khan, M. H.:
Bayesian reliability estimation for the Topp-Leone distribution under progressively type-II censored samples. Soft Comput. 25 (2021), 2131-2152.
DOI 10.1007/s00500-020-05285-w |
Zbl 1491.62138
[20] Galton, F.: Inquiries into Human Faculty and its Development. Macmillan, London (1988).
[21] Hamad, A. M., Salman, B. B.:
On estimation of the stress-strength reliability on POLO distribution function. Ain Shams Eng. J. 12 (2021), 4037-4044.
DOI 10.1016/j.asej.2021.02.029
[22] Hussein, L. K., Rasheed, H. A., Hussein, I. H.:
A class of exponential Rayleigh distribution and new modified weighted exponential Rayleigh distribution with statistical properties. Ibn Al-Haitham J. Pure Appl. Sci. 36 (2023), 390-406.
DOI 10.30526/36.2.3044
[23] Jain, K., Singla, N., Sharma, S. K.:
The generalized inverse generalized Weibull distribution and its properties. J. Probab. 2014 (2014), Article ID 736101, 11 pages.
DOI 10.1155/2014/736101 |
MR 3115122
[25] Kayal, T., Tripathi, Y. M., Kundu, D., Rastogi, M. K.:
Statistical inference of Chen distribution based on type I progressive hybrid censored samples. Stat. Optim. Inf. Comput. 10 (2022), 627-642.
DOI 10.19139/soic-2310-5070-486 |
MR 4401418
[27] Ma, J., Wang, L., Tripathi, Y. M., Rastogi, M. K.:
Reliability inference for stress-strength model based on inverted exponential Rayleigh distribution under progressive type-II censored data. Commun. Stat., Simulation Comput. 52 (2023), 2388-2407.
DOI 10.1080/03610918.2021.1908552 |
MR 4602539 |
Zbl 07714513
[28] Mansour, M. M., Yousof, H. M., Shehata, W. A. M., Ibrahim, M.:
A new two parameter Burr XII distribution: Properties, copula, different estimation methods and modeling acute bone cancer data. J. Nonlinear Sci. Appl. 13 (2020), 223-238.
DOI 10.22436/jnsa.013.05.01 |
MR 4075793
[29] Mohammed, N., Ali, F.:
Estimation of parameters of finite mixture of Rayleigh distribution by the expectation-maximization algorithm. J. Math. 2022 (2022), Article ID 7596449, 7 pages.
DOI 10.1155/2022/7596449 |
MR 4529459
[30] Moors, J. J. A.:
A quantile alternative for kurtosis. The Statistician 37 (1988), 25-32.
DOI 10.2307/2348376
[31] Mostert, P. J., Roux, J. J. J., Bekker, A.:
Bayes estimators of the lifetime parameters using the compound Rayleigh model. S. Afr. Stat. J. 33 (1999), 117-138.
Zbl 0944.62029
[32] Nabeel, M., Ali, S., Shah, I.:
Robust proportional hazard-based monitoring schemes for reliability data. Quality Reliability Eng. Int. 37 (2021), 3347-3361.
DOI 10.1002/qre.2921
[34] Rahman, M. M.:
Cubic transmuted Rayleigh distribution: Theory and application. Aust. J. Stat. 51 (2022), 164-177.
DOI 10.17713/ajs.v51i3.1280
[36] Shatti, R. N., Al-Kinani, I. H.:
Estimating the parameters of exponential-Rayleigh distribution under type-I censored data. Baghdad Sci. J. 21 (2024), 146-150.
DOI 10.21123/bsj.2023.7962
[40] Shojaee, O., Momeni, R.:
The $\alpha$-mixture of cumulative distribution functions: Properties, applications to parallel system and stochastic comparisons. J. Indian Soc. Probab. Stat. 24 (2023), 599-621.
DOI 10.1007/s41096-023-00169-2
[41] Shojaee, O., Piriaei, H., Babanezhad, M.:
E-Bayesian estimations and its E-MSE for compound Rayleigh progressive type-II censored data. Stat. Optim. Inf. Comput. 10 (2022), 1056-1071.
DOI 10.19139/soic-2310-5070-1359 |
MR 4492188
[42] Shojaee, O., Zarei, H., Naruei, F.:
E-Bayesian estimation and the corresponding E-MSE under progressive type-II censored data for some characteristics of Weibull distribution. Stat. Optim. Inf. Comput. 12 (2024), 962-981.
DOI 10.19139/soic-2310-5070-1709 |
MR 4753792
[43] Sirisha, G., Jayasree, G.:
Compound Rayleigh lifetime distribution-I. EPH Int. J. Math. Stat. 3 (2017), 22-28.
DOI 10.53555/eijms.v4i1.18
[44] D. M. Stablein, W. H. Carter, Jr., J. W. Novak:
Analysis of survival data with nonproportional hazard functions. Controlled Clinical Trials 2 (1981), 149-159.
DOI 10.1016/0197-2456(81)90005-2
[46] Wu, M., Gui, W.:
Estimation and prediction for Nadarajah-Haghighi distribution under progressive type-II censoring. Symmetry 13 (2021), Article ID 999, 22 pages.
DOI 10.3390/sym13060999
[47] Yahaya, A., Abdullahi, J., Ieren, T. G.:
Properties and applications of a transmuted Weibull-Rayleigh distribution. J. Pure Appl. Sci. 19 (2019), 126-138.
DOI 10.5455/sf.66126