Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
fractional-Schrödinger-Poisson; quasi-linear term; perturbation method; variational method
Summary:
The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: $$ \begin{cases} (-\Delta )^{s}u+V(x)u+\phi u -{1\over 2}u (-\Delta )^{s}u^{2}=f(x,u), & x\in \mathbb {R}^{3} ,\\ (-\Delta )^{t} \phi = u^{2}, & x\in \mathbb {R}^{3}, \end{cases} $$ where $(-\Delta )^{\alpha }$ is the fractional Laplacian for $\alpha =s$, $t\in (0,1]$ with $s<t$ and $2t+4s>3$. Under assumptions on $V$ and $f$, we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.
References:
[1] Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on $\Bbb{R}^N$. Commun. Partial Differ. Equations 20 (1995), 1725-1741. DOI 10.1080/03605309508821149 | MR 1349229 | Zbl 0837.35043
[2] Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11 (1998), 283-293. DOI 10.12775/TMNA.1998.019 | MR 1659454 | Zbl 0926.35125
[3] Caffarelli, L. A., Roquejoffre, J.-M., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12 (2010), 1151-1179. DOI 10.4171/JEMS/226 | MR 2677613 | Zbl 1221.35453
[4] Caffarelli, L. A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008), 425-461. DOI 10.1007/s00222-007-0086-6 | MR 2367025 | Zbl 1148.35097
[5] Caffarelli, L. A., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41 (2011), 203-240. DOI 10.1007/s00526-010-0359-6 | MR 2782803 | Zbl 1357.49143
[6] Costa, D. G.: On a class of elliptic systems in $\Bbb{R}^n$. Electron. J. Differ. Equ. 1994 (1994), Article ID 7, 14 pages. MR 1292598 | Zbl 0809.35020
[7] Cotsiolis, A., Tavoularis, N. K.: Sharp Sobolev type inequalities for higher fractional derivatives. C. R., Math., Acad. Sci. Paris 335 (2002), 801-804. DOI 10.1016/S1631-073X(02)02576-1 | MR 1947703 | Zbl 1032.26010
[8] D'Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb., Sect. A, Math. 134 (2004), 893-906. DOI 10.1017/S030821050000353X | MR 2099569 | Zbl 1064.35182
[9] D'Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25 (2015), 1447-1476. DOI 10.1142/S0218202515500384 | MR 3340706 | Zbl 1323.35205
[10] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. DOI 10.1016/j.bulsci.2011.12.004 | MR 2944369 | Zbl 1252.46023
[11] Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000), 298-305. DOI 10.1016/S0375-9601(00)00201-2 | MR 1755089 | Zbl 0948.81595
[12] Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141 (2013), 253-263. DOI 10.1090/S0002-9939-2012-11293-6 | MR 2988727 | Zbl 1267.35096
[13] Nie, J., Wu, X.: Existence and multiplicity of non-trivial solutions for a class of modified Schrödinger-Poisson systems. J. Math. Anal. Appl. 408 (2013), 713-724. DOI 10.1016/j.jmaa.2013.06.011 | MR 3085065 | Zbl 1308.81082
[14] Peng, X., Jia, G.: Existence and asymptotical behavior of positive solutions for the Schrödinger-Poisson system with double quasi-linear terms. Discrete Contin. Dyn. Syst., Ser. B 27 (2022), 2325-2344. DOI 10.3934/dcdsb.2021134 | MR 4399151 | Zbl 1486.35209
[15] Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237 (2006), 655-674. DOI 10.1016/j.jfa.2006.04.005 | MR 2230354 | Zbl 1136.35037
[16] Salvatore, A.: Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in $\Bbb{R}^3$. Adv. Nonlinear Stud. 6 (2006), 157-169. DOI 10.1515/ans-2006-0203 | MR 2219833 | Zbl 1229.35065
[17] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). DOI 10.1515/9781400883882 | MR 0290095 | Zbl 0207.13501
[18] Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in $\Bbb{R}^N$. Nonlinear Anal., Real World Appl. 21 (2015), 76-86. DOI 10.1016/j.nonrwa.2014.06.008 | MR 3261580 | Zbl 1302.35415
Partner of
EuDML logo