[3] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).
[8] Diening, L., Ebmeyer, C., Růžička, M.:
Optimal convergence for the implicit space-time discretization of parabolic systems with $p$-structure. SIAM J. Numer. Anal. 45 (2007), 457-472.
DOI 10.1137/05064120x |
MR 2300281 |
Zbl 1140.65060
[10] Lorca, S. A., Rojas-Medar, M. A.:
Weak solutions for the viscous incompressible chemically active fluids. Rev. Mat. Estat. 14 (1996), 183-199.
MR 1465922 |
Zbl 0894.76091
[11] Málek, J., Rajagopal, K. R.:
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Evolutionary Equations II Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam (2005), 371-459.
DOI 10.1016/s1874-5717(06)80008-3 |
MR 2182831 |
Zbl 1095.35027
[12] Moretti, A. C., Rojas-Medar, M. A., Rojas-Medarm, M. D.:
The equations of a viscous incompressible chemically active fluid: Existence and uniqueness of strong solutions in an unbounded domain. Comput. Math. Appl. 44 (2002), 287-299.
DOI 10.1016/s0898-1221(02)00148-7 |
MR 1912828 |
Zbl 1179.76015
[17] Rojas-Medar, M. A., Lorca, S. A.:
Global strong solution of the equations for the motion of a chemical active fluid. Mat. Contemp. 8 (1995), 319-335.
MR 1330043 |
Zbl 0853.35096
[18] Rojas-Medar, M. A., Lorca, S. A.:
The equations of a viscous incompressible chemical active fluid I: Uniqueness and existence of the local solutions. Rev. Mat. Apl. 16 (1995), 57-80.
MR 1382269 |
Zbl 0849.35101
[19] Rojas-Medar, M. A., Lorca, S. A.:
The equations of a viscous incompressible chemical active fluid II: Regularity of solutions. Rev. Mat. Apl. 16 (1995), 81-95.
MR 1382270 |
Zbl 1126.35350
[21] Wu, F.:
Blowup criterion via only the middle eigenvalue of the strain tensor in anisotropic Lebesgue spaces to the 3D double-diffusive convection equations. J. Math. Fluid Mech. 22 (2020), Article ID 24, 9 pages.
DOI 10.1007/s00021-020-0483-9 |
MR 4085356 |
Zbl 1435.35313