Previous |  Up |  Next

Article

Title: WENO-Z scheme with new nonlinear weights for Hamilton-Jacobi equations and adaptive approximation (English)
Author: Kim, Kwangil
Author: Ri, Kwanhung
Author: Han, Wonho
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 3
Year: 2025
Pages: 413-439
Summary lang: English
.
Category: math
.
Summary: A new fifth-order weighted essentially nonoscillatory (WENO) scheme is designed to approximate Hamilton-Jacobi equations. As employing a fifth-order linear approximation and three third-order ones on the same six-point stencil as before, a newly considered WENO-Z methodology is adapted to define nonlinear weights and the final WENO reconstruction results in a simple and clear convex combination. The scheme has formal fifth-order accuracy in smooth regions of the solution and nonoscillating behavior nearby singularities. A full account is given of the key role of parameters in WENO reconstruction and their selection. The latter half describes the adaptive stage on WENO approximation in convergence framework, which enables us to get the numerical solution to converge still achieving high-order accuracy for the nonconvex problems where the pure WENO scheme fails to converge. Detailed numerical experiments are performed to demonstrate the ability of the proposed numerical methods. (English)
Keyword: Hamilton-Jacobi equation
Keyword: WENO-Z scheme
Keyword: nonlinear weight
Keyword: adaptive approximation
Keyword: convergence
MSC: 35F21
MSC: 65M06
MSC: 65M12
DOI: 10.21136/AM.2025.0258-24
.
Date available: 2025-07-01T12:20:33Z
Last updated: 2025-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153026
.
Reference: [1] Abedian, R.: A new fifth-order symmetrical WENO-Z scheme for solving Hamilton-Jacobi equations.J. Math. Model. 10 (2022), 279-297. Zbl 1524.35139, MR 4436118, 10.22124/jmm.2021.20251.1765
Reference: [2] Abedian, R., Salehi, R.: A RBFWENO finite difference scheme for Hamilton-Jacobi equations.Comput. Math. Appl. 76 (2020), 2002-2020. Zbl 1453.65207, MR 4070338, 10.1016/j.camwa.2019.09.027
Reference: [3] Abgrall, R.: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations.SIAM J. Sci. Comput. 31 (2009), 2419-2446. Zbl 1197.65167, MR 2520283, 10.1137/040615997
Reference: [4] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations.SIAM J. Sci. Comput. 38 (2016), A171--A195. Zbl 1407.65093, MR 3449908, 10.1137/140998482
Reference: [5] Borges, R., Carmona, M., Costa, B., Don, W. S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws.J. Comput. Phys. 227 (2008), 3191-3211. Zbl 1136.65076, MR 2392730, 10.1016/j.jcp.2007.11.038
Reference: [6] Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations.SIAM J. Numer. Anal. 41 (2003), 1339-1369. Zbl 1050.65076, MR 2034884, 10.1137/S0036142902408404
Reference: [7] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially non-oscillator, large time-step scheme for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 27 (2005), 1071-1091. Zbl 1105.65090, MR 2199921, 10.1137/040608787
Reference: [8] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations.Math. Comput. 43 (1984), 1-19. Zbl 0556.65076, MR 0744921, 10.1090/S0025-5718-1984-0744921-8
Reference: [9] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.SIAM Rev. 43 (2001), 89-112. Zbl 0967.65098, MR 1854647, 10.1137/S003614450036757X
Reference: [10] Han, W., Kim, K., Hong, U.: Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations.Appl. Math., Praha 68 (2023), 661-684. Zbl 07790540, MR 4645003, 10.21136/AM.2023.0264-22
Reference: [11] Henrick, A. K., Aslam, T. D., Powers, J. M.: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points.J. Comput. Phys. 207 (2005), 542-567. Zbl 1072.65114, 10.1016/j.jcp.2005.01.023
Reference: [12] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation.Appl. Math. Comp. 290 (2016), 21-32. Zbl 1410.65313, MR 3523409, 10.1016/j.amc.2016.05.022
Reference: [13] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 21 (2000), 2126-2143. Zbl 0957.35014, MR 1762034, 10.1137/S106482759732455X
Reference: [14] Jiang, Y.-Q., Zhou, S.-G., Zhang, X., Hu, Y.-G.: High-order weighted compact nonlinear scheme for one- and two-dimensional Hamilton-Jacobi equations.Appl. Numer. Math. 171 (2022), 353-368. Zbl 1522.65145, MR 4318807, 10.1016/j.apnum.2021.09.012
Reference: [15] Jin, S., Xin, Z.: Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, and relaxation schemes.SIAM J. Numer. Anal. 35 (1998), 2385-2404. Zbl 0921.65063, MR 1655852, 10.1137/S0036142996314366
Reference: [16] Kim, K., Hong, U., Ri, K., Yu, J.: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes.Appl. Math., Praha 66 (2021), 599-617. Zbl 1554.65212, MR 4283305, 10.21136/AM.2021.0368-19
Reference: [17] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations.J. Sci. Comput. 65 (2015), 110-137. Zbl 1408.65053, MR 3394440, 10.1007/s10915-014-9955-5
Reference: [18] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 28 (2006), 2229-2247. Zbl 1126.65075, MR 2272259, 10.1137/040612002
Reference: [19] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes.J. Comput. Phys. 284 (2015), 367-388. Zbl 1352.65422, MR 3303624, 10.1016/j.jcp.2014.12.039
Reference: [20] Osher, S., Shu, C.-W.: High-order essentially nonosillatory schemes for Hamilton-Jacobi equations.SIAM J. Numer. Anal. 28 (1991), 907-922. Zbl 0736.65066, MR 1111446, 10.1137/0728049
Reference: [21] Qiu, J., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations.J. Comput. Phys. 204 (2005), 82-99. Zbl 1070.65078, MR 2121905, 10.1016/j.jcp.2004.10.003
Reference: [22] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws.SIAM J. Sci. Comput. 31 (2008), 584-607. Zbl 1186.65123, MR 2460790, 10.1137/070687487
Reference: [23] Samala, R., Biswas, B.: Arc length-based WENO scheme for Hamilton-Jacobi equations.Commun. Appl. Math. Comput. 3 (2021), 481-496. Zbl 1499.65429, MR 4303511, 10.1007/s42967-020-00091-5
Reference: [24] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.SIAM Rev. 51 (2009), 82-126. Zbl 1160.65330, MR 2481112, 10.1137/070679065
Reference: [25] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes.Acta Numerica 29 (2020), 701-762. Zbl 07674567, MR 4189296, 10.1017/S0962492920000057
Reference: [26] Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations.Methods Appl. Anal. 12 (2005), 169-190. Zbl 1119.65378, MR 2257526, 10.4310/MAA.2005.v12.n2.a6
Reference: [27] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 24 (2003), 1005-1030. Zbl 1034.65051, MR 1950522, 10.1137/S1064827501396798
Reference: [28] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes.J. Comput. Phys. 254 (2013), 76-92. Zbl 1349.65364, MR 3143358, 10.1016/j.jcp.2013.07.030
Reference: [29] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations.Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. Zbl 1371.65089, MR 3652179, 10.1002/num.22133
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo