Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$S$-coherent ring; $S$-flat module; $S$-flat preenvelope
Summary:
We investigate the notion of $S$-flat preenvelopes of modules. In particular, we give an example that a ring $R$ being coherent does not imply that every $R$-module has an $S$-flat preenvelope, giving a negative answer to the question proposed by D. Bennis and A. Bouziri (2025). Besides, we also show that a ring $R_S$ being coherent also does not imply that $R$ is an $S$-coherent ring in general.
References:
[1] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. DOI 10.1081/AGB-120013328 | MR 1936480 | Zbl 1060.13007
[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[3] Baeck, J.: $S$-injective modules. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118 (2024), Article ID 20, 20 pages. DOI 10.1007/s13398-023-01514-7 | MR 4662890 | Zbl 1540.16005
[4] Bennis, D., Bouziri, A.: $S$-flat cotorsion pair. Bull. Korean Math. Soc. 62 (2025), 237-250. DOI 10.4134/BKMS.b240152 | MR 4857929 | Zbl 08014187
[5] Bennis, D., Hajoui, M. El: On $S$-coherence. J. Korean Math. Soc. 55 (2018), 1499-1512. DOI 10.4134/JKMS.j170797 | MR 3883493 | Zbl 1405.13035
[6] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. DOI 10.1090/S0002-9947-1960-0120260-3 | MR 0120260 | Zbl 0100.26602
[7] Dai, G., Ding, N.: Coherent rings and absolutely pure covers. Commun. Algebra 46 (2018), 1267-1271. DOI 10.1080/00927872.2017.1344693 | MR 3780239 | Zbl 1442.16003
[8] Dai, G., Ding, N.: Coherent rings and absolutely pure precovers. Commun. Algebra 47 (2019), 4743-4748. DOI 10.1080/00927872.2019.1595637 | MR 3991048 | Zbl 1470.16008
[9] Enochs, E. E.: Injective and flat covers, envelopes and resolvents. Isr. J. Math. 39 (1981), 189-209. DOI 10.1007/BF02760849 | MR 0636889 | Zbl 0464.16019
[10] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. I. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2011). DOI 10.1515/9783110215212 | MR 2857612 | Zbl 1238.13001
[11] Fuchs, L., Salce, L.: Modules over non-Noetherian Domains. Mathematical Surveys and Monographs 84. AMS, Providence (2001). DOI 10.1090/surv/084 | MR 1794715 | Zbl 0973.13001
[12] Qi, W., Zhang, X., Zhao, W.: New characterizations of $S$-coherent rings. J. Algebra Appl. 22 (2023), Article ID 2350078, 14 pages. DOI 10.1142/S0219498823500780 | MR 4553213 | Zbl 1516.13008
[13] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. DOI 10.1112/jlms/s2-2.2.323 | MR 0258888 | Zbl 0194.06602
[14] Wang, F., Kim, H.: Foundations of Commutative Rings and Their Modules. Algebra and Applications 22. Springer, Singapore (2016). DOI 10.1007/978-981-10-3337-7 | MR 3587977 | Zbl 1367.13001
[15] Zhang, X.: The $u$-$S$-weak global dimensions of commutative rings. Commun. Korean Math. Soc. 38 (2023), 97-112. DOI 10.4134/CKMS.c220016 | MR 4542624 | Zbl 1525.13019
Partner of
EuDML logo