| Title: | Finite groups with a small number of cyclic subgroups (English) |
| Author: | Liu, Hailin |
| Author: | Chen, Xiangyu |
| Author: | Qiao, Shouhong |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 839-851 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | A finite group $G$ is called an $m$-cyclic group if it has exactly $m$ cyclic subgroups (including the identity subgroup). For $2\leq m\leq 12$, the $m$-cyclic groups have been classified in a series of papers. We push the above research work further to classify the finite \hbox {13-cyclic} groups, which could be considered as a step to answer the open problem posed by M. Tărnăuceanu (2015). The detailed structure of many groups of ``small'' orders is also analyzed. The following main theorem is proved: Let $G$ be a finite 13-cyclic group. Then $|\pi (G)|\leq 2$, and one of the following holds: \begin {itemize} \item [(1)] $|\pi (G)|=1$, $G\cong Q_{32},{\bf Z}_{11}\times {\bf Z}_{11}$ or ${\bf Z}_{p^{12}}$ with $p$ a prime. \item [(2)] $|\pi (G)|=2$, $G\cong D_{22}$, ${\rm SL}(2, 3)$, ${\bf Z}_{11}: {\bf Z}_{5}$, ${\bf Z}_7 : {\bf Z}_8$, ${\bf Z}_7 : {\bf Z}_{27}$, ${\bf Z}_5 : {\bf Z}_{16}$, or ${\bf Z}_3 : {\bf Z}_{32}$. \end {itemize} (English) |
| Keyword: | finite group |
| Keyword: | $m$-cyclic group |
| Keyword: | cyclic subgroup |
| MSC: | 20D20 |
| MSC: | 20D25 |
| DOI: | 10.21136/CMJ.2025.0441-24 |
| . | |
| Date available: | 2025-09-19T11:53:10Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153055 |
| . | |
| Reference: | [1] Ashrafi, A. R., Haghi, E.: On $n$-cyclic groups.Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 3233-3246. Zbl 1480.20059, MR 3999087, 10.1007/s40840-018-0656-3 |
| Reference: | [2] Belshoff, R., Dillstrom, J., Reid, L.: Finite groups with a prescribed number of cyclic subgroups.Commun. Algebra 47 (2019), 1043-1056. Zbl 1472.20049, MR 3938537, 10.1080/00927872.2018.1499923 |
| Reference: | [3] Group, GAP: GAP -- Groups, Algorithms, Programming: A System for Computational Discrete Algebra, Version 4.12.2.Available at https://www.gap-system.org/ (2022). |
| Reference: | [4] Haghi, E., Ashrafi, A. R.: On the number of cyclic subgroups in a finite group.Southeast Asian Bull. Math. 42 (2018), 865-873. Zbl 1424.20026, MR 3888035 |
| Reference: | [5] Hampejs, M., Holighaus, N., Tóth, L., Wiesmeyr, C.: Representing and counting the subgroups of the group $\Bbb Z_m \times \Bbb Z_n$.J. Numbers 2014 (2014), Article ID 491428, 6 pages. Zbl 1423.11172, 10.1155/2014/491428 |
| Reference: | [6] Kalra, H.: Finite groups with specific number of cyclic subgroups.Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 52, 10 pages. Zbl 1515.20122, MR 3963822, 10.1007/s12044-019-0490-z |
| Reference: | [7] Li, C. H., Qiao, S.: Finite groups of fourth-power free order.J. Group Theory 16 (2013), 275-298. Zbl 1278.20023, MR 3031875, 10.1515/jgt-2012-0042 |
| Reference: | [8] Qiao, S., Li, C. H.: The finite groups of cube-free order.J. Algebra 334 (2011), 101-108. Zbl 1234.20027, MR 2787655, 10.1016/j.jalgebra.2011.02.040 |
| Reference: | [9] Richards, I. M.: A remark on the number of cyclic subgroups of a finite group.Am. Math. Mon. 91 (1984), 571-572. MR 0764798, 10.1080/00029890.1984.11971498 |
| Reference: | [10] Sharma, K., Reddy, A. S.: Groups having 11 or 12 cyclic subgroups.Available at https://arxiv.org/abs/2210.11788 (2023), 26 pages. 10.48550/arXiv.2210.11788 |
| Reference: | [11] Sharma, K., Reddy, A. S.: Groups having 11 cyclic subgroups.Int. J. Group Theory 13 (2024), 203-214. Zbl 1535.20108, MR 4680884, 10.22108/ijgt.2023.135547.1812 |
| Reference: | [12] Suzuki, M.: Group Theory. II.Grundlehren der Mathematischen Wissenschaften 248. Springer, New York (1986). Zbl 0586.20001, MR 0815926, 10.1007/978-3-642-86885-6 |
| Reference: | [13] Tărnăuceanu, M.: Non-CLT groups of order $pq^3$.Math. Slovaca 64 (2014), 311-314. Zbl 1349.20028, MR 3201346, 10.2478/s12175-014-0205-y |
| Reference: | [14] Tărnăuceanu, M.: Finite groups with a certain number of cyclic subgroups.Am. Math. Mon. 122 (2015), 275-276. Zbl 1328.20045, MR 3327719, 10.4169/amer.math.monthly.122.03.275 |
| Reference: | [15] Tărnăuceanu, M., Tóth, L.: Cyclicity degrees of finite groups.Acta Math. Hung. 145 (2015), 489-504. Zbl 1348.20027, MR 3325804, 10.1007/s10474-015-0480-2 |
| Reference: | [16] Tóth, L.: On the number of cyclic subgroups of a finite Abelian group.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 423-428. Zbl 1274.20047, MR 2963406 |
| . |
Fulltext not available (moving wall 24 months)