| Title: | Maximal and Riesz potential operators on Musielak-Orlicz spaces over unbounded metric measure spaces (English) |
| Author: | Ohno, Takao |
| Author: | Shimomura, Tetsu |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 963-992 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We are concerned with the boundedness of modified Hardy-Littlewood maximal operator $M_{\lambda }$ and Sobolev inequalities for the variable Riesz potentials $I_{\alpha (\cdot ),\tau }f$ on Musielak-Orlicz spaces $L^{\Phi }(X)$ over unbounded metric measure spaces, as an improvement of our recent paper, see T. Ohno, T. Shimomura (2025a). As an application, we give the boundedness of $M_{\lambda }$ and Sobolev inequalities for $I_{\alpha (\cdot ),\tau }f$ for the multi-phase functionals with variable exponents $$ \Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}+ b(x) t^{s(x)}, \quad x \in X, \ t \ge 0 , $$ where $p({\cdot })$, $q({\cdot })$, and $s({\cdot })$ are log-Hölder continuous, $p(x)<q(x) \le s(x)$ for $x\in X$, and $a({\cdot })$, and $b({\cdot })$ are nonnegative, bounded, and Hölder continuous. (English) |
| Keyword: | maximal function |
| Keyword: | Riesz potential |
| Keyword: | Musielak-Orlicz space |
| Keyword: | Sobolev's inequality |
| Keyword: | metric measure space |
| Keyword: | non-doubling measure |
| Keyword: | multi-phase functional |
| MSC: | 46E30 |
| MSC: | 46E35 |
| DOI: | 10.21136/CMJ.2025.0526-24 |
| . | |
| Date available: | 2025-09-19T12:02:40Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153062 |
| . | |
| Reference: | [1] Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces.Math. Scand. 116 (2015), 5-22. Zbl 1316.42018, MR 3322604, 10.7146/math.scand.a-20448 |
| Reference: | [2] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z |
| Reference: | [3] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17. EMS, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099 |
| Reference: | [4] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2 |
| Reference: | [5] Cruz-Uribe, D. V., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type.Stud. Math. 242 (2018), 109-139. Zbl 1397.42009, MR 3778907, 10.4064/sm8556-6-2017 |
| Reference: | [6] Filippis, C. De, Oh, J.: Regularity for multi-phase variational problems.J. Differ. Equations 267 (2019), 1631-1670. Zbl 1422.49037, MR 3945612, 10.1016/j.jde.2019.02.015 |
| Reference: | [7] Gogatishvili, A., Kokilashvili, V.: Criteria of strong type two-weighted inequalities for fractional maximal functions.Georgian Math. J. 3 (1996), 423-446. Zbl 0884.42015, MR 1407384, 10.1007/BF02259772 |
| Reference: | [8] Hajłasz, P., Koskela, P.: Sobolev Met Poincaré.Memoirs of the American Mathematical Society 688. AMS, Providence (2000). Zbl 0954.46022, MR 1683160, 10.1090/memo/0688 |
| Reference: | [9] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension.Math. Z. 254 (2006), 591-609. Zbl 1109.46037, MR 2244368, 10.1007/s00209-006-0960-8 |
| Reference: | [10] Hashimoto, D., Sawano, Y., Shimomura, T.: Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces.Colloq. Math. 161 (2020), 51-66. Zbl 1464.46043, MR 4085112, 10.4064/cm7535-4-2019 |
| Reference: | [11] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4 |
| Reference: | [12] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext. Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8 |
| Reference: | [13] Kairema, A.: Sharp weighted bounds for fractional integral operators in a space of homogeneous type.Math. Scand. 114 (2014), 226-253. Zbl 1302.47075, MR 3206387, 10.7146/math.scand.a-17109 |
| Reference: | [14] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008 |
| Reference: | [15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum. Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077 |
| Reference: | [16] Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces.Tohoku Math. J. 69 (2017), 483-495. Zbl 1387.42017, MR 3732884, 10.2748/tmj/1512183626 |
| Reference: | [17] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149 |
| Reference: | [18] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1997 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469 |
| Reference: | [19] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1998 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312 |
| Reference: | [20] Ohno, T., Shimomura, T.: Musielak-Orlicz-Sobolev spaces on metric measure spaces.Czech. Math. J. 65 (2015), 435-474. Zbl 1363.46027, MR 3360438, 10.1007/s10587-015-0187-0 |
| Reference: | [21] Ohno, T., Shimomura, T.: Sobolev inequalities for Riesz potentials of functions in $L^{p(\cdot)}$ over nondoubling measure spaces.Bull. Aust. Math. Soc. 93 (2016), 128-136. Zbl 1354.46036, MR 3436021, 10.1017/S0004972715001331 |
| Reference: | [22] Ohno, T., Shimomura, T.: Maximal and Riesz potential operators on Musielak-Orlicz spaces over metric measure spaces.Integral Equations Oper. Theory 90 (2018), Article ID 62, 18 pages. Zbl 1401.42020, MR 3856222, 10.1007/s00020-018-2484-0 |
| Reference: | [23] Ohno, T., Shimomura, T.: Trudinger-type inequalities for variable Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over metric measure spaces.Math. Nachr. 297 (2024), 1248-1274. Zbl 1550.46032, MR 4734972, 10.1002/mana.202300265 |
| Reference: | [24] Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces.Bull. Sci. Math. 199 (2025), Article ID 103546, 47 pages. Zbl 07991347, MR 4837131, 10.1016/j.bulsci.2024.103546 |
| Reference: | [25] Ohno, T., Shimomura, T.: Generalized Riesz potential operators on Musielak-Orlicz-Morrey spaces over unbounded metric measure spaces.Anal. Math. Phys. 15 (2025), Article ID 24, 47 pages. Zbl 08013133, MR 4859610, 10.1007/s13324-025-01020-6 |
| Reference: | [26] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents.Adv. Nonlinear Anal. 9 (2020), 710-728. Zbl 1420.35145, MR 3985000, 10.1515/anona-2020-0022 |
| Reference: | [27] Samko, N. G., Samko, S. G., Vakulov, B. G.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent.J. Math. Anal. Appl. 335 (2007), 560-583. Zbl 1142.46018, MR 2340340, 10.1016/j.jmaa.2007.01.091 |
| Reference: | [28] Sawano, Y.: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas.Hokkaido Math. J. 34 (2005), 435-458. Zbl 1088.42010, MR 2159006, 10.14492/hokmj/1285766231 |
| Reference: | [29] Sawano, Y., Shigematsu, M., Shimomura, T.: Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces.Forum Math. 32 (2020), 339-359. Zbl 1436.42029, MR 4069939, 10.1515/forum-2019-0140 |
| Reference: | [30] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents.Collect. Math. 64 (2013), 313-350. Zbl 1280.31001, MR 3084400, 10.1007/s13348-013-0082-7 |
| Reference: | [31] Sawano, Y., Shimomura, T.: Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces.Proc. Am. Math. Soc. 147 (2019), 2877-2885. Zbl 1416.42025, MR 3973891, 10.1090/proc/14225 |
| Reference: | [32] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces.Result. Math. 76 (2021), Article ID 188, 22 pages. Zbl 1479.42055, MR 4305494, 10.1007/s00025-021-01490-7 |
| Reference: | [33] Stempak, K.: Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators.Ann. Acad. Sci. Fenn., Math. 41 (2016), 313-314. Zbl 1337.42023, MR 3467713, 10.5186/aasfm.2016.4119 |
| . |
Fulltext not available (moving wall 24 months)