Previous |  Up |  Next

Article

Title: Filtrations by cosupports via tensor actions (English)
Author: Xu, Peng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 1017-1027
Summary lang: English
.
Category: math
.
Summary: Suppose $\mathcal {T}$ is a rigidly-compactly generated tensor triangulated category and $\mathcal {K}$ is a compactly generated triangulated category on which $\mathcal {T}$ acts, in the sense of Stevenson. We prove that if $\rm {Spc}(\mathcal {T}^{c})$ is Noetherian and $\mathcal {K}$ is stable, then each object in $\mathcal {K}$ has a unique functorial tower, filtered by Balmer-Favi cosupports. This is an analogy of Stevenson's work on filtrations by Balmer-Favi supports. (English)
Keyword: triangulated category
Keyword: colocalizing subcategory
Keyword: Balmer-Favi cosupport
Keyword: filtration
MSC: 18D15
MSC: 18G80
MSC: 18M05
DOI: 10.21136/CMJ.2025.0018-25
.
Date available: 2025-09-19T12:05:38Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153064
.
Reference: [1] Balmer, P.: The spectrum of prime ideals in tensor triangulated categories.J. Reine Angew. Math. 588 (2005), 149-168. Zbl 1080.18007, MR 2196732, 10.1515/crll.2005.2005.588.149
Reference: [2] Balmer, P., Favi, G.: Generalized tensor idempotents and the telescope conjecture.Proc. Lond. Math. Soc. (3) 102 (2011), 1161-1185. Zbl 1220.18009, MR 2806103, 10.1112/plms/pdq050
Reference: [3] Barthel, T., Castellana, N., Heard, D., Sanders, B.: Cosupport in tensor triangular geometry.Available at https://arxiv.org/abs/2303.13480 (2023), 87 pages. 10.48550/arXiv.2303.13480
Reference: [4] Barthel, T., Heard, D., Sanders, B.: Stratification in tensor triangular geometry with applications to spectral Mackey functors.Camb. J. Math. 11 (2023), 829-915. Zbl 1524.18032, MR 4650265, 10.4310/CJM.2023.v11.n4.a2
Reference: [5] Benson, D., Iyengar, S. B., Krause, H.: Local cohomology and support for triangulated categories.Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575-621. Zbl 1171.18007, MR 2489634, 10.24033/asens.2076
Reference: [6] Benson, D., Iyengar, S. B., Krause, H.: Stratifying triangulated categories.J. Topol. 4 (2011), 641-666. Zbl 1239.18013, MR 2832572, 10.1112/jtopol/jtr017
Reference: [7] Benson, D. J., Iyengar, S. B., Krause, H.: Colocalizing subcategories and cosupport.J. Reine Angew. Math. 673 (2012), 161-207. Zbl 1271.18012, MR 2999131, 10.1515/CRELLE.2011.180
Reference: [8] Neeman, A.: Colocalizing subcategories of $\Bbb D(R)$.J. Reine Angew. Math. 653 (2011), 221-243. Zbl 1221.13030, MR 2794632, 10.1515/crelle.2011.028
Reference: [9] Stevenson, G.: Support theory via actions of tensor triangulated categories.J. Reine Angew. Math. 681 (2013), 219-254. Zbl 1280.18010, MR 3181496, 10.1515/crelle-2012-0025
Reference: [10] Stevenson, G.: Subcategories of singularity categories via tensor actions.Compos. Math. 150 (2014), 229-272. Zbl 1322.18004, MR 3177268, 10.1112/S0010437X1300746X
Reference: [11] Stevenson, G.: Filtrations via tensor actions.Int. Math. Res. Not. 2018 (2018), 2535-2558. Zbl 1410.18015, MR 3801492, 10.1093/imrn/rnw325
Reference: [12] Verasdanis, C.: Costratification and actions of tensor-triangulated categories.Available at https://arxiv.org/abs/2211.04139 (2022), 27 pages. 10.48550/arXiv.2211.04139
Reference: [13] Verasdanis, C.: Colocalizing subcategories of singularity categories.J. Algebra 662 (2025), 608-624. Zbl 1551.18020, MR 4795668, 10.1016/j.jalgebra.2024.08.029
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo