Previous |  Up |  Next

Article

Keywords:
third-order Jacobsthal number; hyperbolic number; bihyperbolic number; recurrence relation
Summary:
A new generalization of third-order Jacobsthal bihyperbolic polynomials is introduced. Some of the properties of presented polynomials are given. A general Vajda formula for the generalized bihyperbolic third-order Jacobsthal polynomials is obtained. This result implies the Catalan, Cassini and d'Ocagne identities. Moreover, generating function and matrix generators for these polynomials are presented.
References:
[1] Bilgici, G., Daşdemir, A.: Some unrestricted Fibonacci and Lucas hyper-complex numbers. Acta Comment. Univ. Tartu. Math. 24 (2020), 37-48. DOI 10.12697/ACUTM.2020.24.03 | MR 4183381 | Zbl 1471.11045
[2] Bilgin, M., Ersoy, S.: Algebraic properties of bihyperbolic numbers. Adv. Appl. Clifford Algebr. 30 (2020), Article ID 13, 17 pages. DOI 10.1007/s00006-019-1036-2 | MR 4054825 | Zbl 1442.30049
[3] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Frontiers in Mathematics. Birkhäuser, Basel (2008). DOI 10.1007/978-3-7643-8614-6 | MR 2411620 | Zbl 1151.53001
[4] Cerda-Morales, G.: Identities for third order Jacobsthal quaternions. Adv. Appl. Clifford Algebr. 27 (2017), 1043-1053. DOI 10.1007/s00006-016-0654-1 | MR 3651501 | Zbl 1420.11032
[5] Cerda-Morales, G.: On a generalization of Tribonacci quaternions. Mediterr. J. Math. 14 (2017), Article ID 239, 12 pages. DOI 10.1007/s00009-017-1042-3 | MR 3735469 | Zbl 1409.11097
[6] Cerda-Morales, G.: Dual third-order Jacobsthal quaternions. Proyecciones 37 (2018), 731-747. DOI 10.4067/S0716-09172018000400731 | MR 3882525 | Zbl 1440.11015
[7] Cerda-Morales, G.: On third-order Jacobsthal polynomials and their properties. Miskolc Math. Notes 22 (2021), 123-132. DOI 10.18514/MMN.2021.3227 | MR 4292632 | Zbl 1474.11045
[8] Cockle, J.: On certain functions resembling quaternions, and on a new imaginary in algebra. Phil. Mag. (3) 33 (1848), 435-439. DOI 10.1080/14786444808646139
[9] Cockle, J.: On a new imaginary in algebra. Phil. Mag. (3) 34 (1849), 37-47. DOI 10.1080/14786444908646169
[10] Cook, C. K., Bacon, M. R.: Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. Ann. Math. Inform. 41 (2013), 27-39. MR 3072290 | Zbl 1274.11028
[11] Olariu, S.: Commutative complex numbers in four dimensions. Complex Numbers in $n$ Dimensions North-Holland Mathematics Studies 190. Elsevier, Amsterdam (2002), 51-147. DOI 10.1016/S0304-0208(02)80004-4
[12] Pogorui, A. A., Rodríguez-Dagnino, R. M., Rodríguez-Said, R. D.: On the set of zeros of bihyperbolic polynomials. Complex Var. Elliptic Equ. 53 (2008), 685-690. DOI 10.1080/17476930801973014 | MR 2431350 | Zbl 1158.30300
Partner of
EuDML logo